

CIVIL ENGINEERING

GATE | PSUs

TRANSPORTATION ENGINEERING

Volume - I: Study Material with Classroom Practice Questions

Transportation Engineering

Solutions for Volume : I Classroom Practice Questions

A **Chapter-1** Highway Development and Planning 01. Ans: (d) Sol: Number of with population Length Utility Road 2000 Utility/km (**km**) < 2000 500 > 5000 0 Р 20 8 6 1 $8 \times 0.5 + 6 \times 1 + 1 \times 2 = 12$ 12/20 = 0.625.5/28 19×0.5+8×1+4×2= 19 8 4 0 28 =0.9125.5 7 2 12 5 R $7 \times 0.5 + 5 \times 1 + 2 \times 2 = 12.5$ 12.5/12=1.04 Weightage 2 0.5 1 factor

∴ RQP

02. Ans: (a)

Sol:

Road Lane	Length (cm)	Number of villages with population ranges			Industrial Product	Utility	Utility/km	
		1000-2000	2000-5000	5000-10000	>10000			
Р	300	100	80	30	6	200	100×1+80×2+30× 3+6×4+200 =574	574/300 =1.91
Q	400	200	90	00	8	270	200×1+90×2+8×4+270	682/400 =1.70
R	500	240	110	70	10	315	240×1+110×2+70 ×3+10×4+315 =1025	1025/500 =2.05
S	550	248	112	73	12	335	248×1+112×2+73×3 +12×4+335 =1074	1074/550 =1.95
Weightage factor		1	2	3	4			

∴ RSPQ

Chapter- 4 Highway Geometric Design - Gradients

Common data for Questions 01 & 02

01. Ans: (b)

Sol: Height of crown $=\frac{W}{2n}=\frac{3.5\times1000}{2\times60}$ = 29.2 mm

02. Ans: (d)

Sol: Height of crown $=\frac{W}{2n}=\frac{3.5\times1000}{2\times40}$ = 43.75 mm

03. Ans: (b)

04. Ans: (a) Sol: G.C = $\frac{30 + R}{R}$ G.C = $\frac{30 + 50}{50}$ = 1.6 Max GC = $\frac{75}{50}$ = 1.5 \therefore GC = 1.5 The compensated gradient = 6% - 1.5 = 4.5%

05. Ans: (a) Sol: Height of crown $=\frac{W}{2n}=7.5$ cm $\frac{W}{2n} = 7.5 \ 2n = \frac{9 \times 100}{7.5}$ $n = 60 \implies 1 \text{ in } 60$

06. Ans: (d)

07. Ans: (a)

Chapter- 5 Highway Geometric Design - Sight Distances A

01. Ans: (c)
Sol: B.D = 16 m,
$$f = 0.4$$

 $\frac{V^2}{254 f} = 16 \Rightarrow \frac{V^2}{254 \times 0.4} = 16$
 $V = 40.3 \text{ kmph} \approx 40 \text{ kmph}$
02. Ans: (c)
Sol: V = 30 kmph.

bl: V = 30 kmph,
f = 0.4
BD_{down} = 2 BD_{up}

$$\frac{V^2}{254(f - 0.01n)} = \frac{2 \times V^2}{254(f + 0.01n)}$$
f + 0.01 n = 2 f - 0.02n
0.03 n = 0.4
n = 13.33%

	ACE Engineering Publications	
and the second		

03. Ans: (b) Sol: V = 72 kmph, n = 2%, f = 0.15, t=1.5 sec

 $SSD = 0.278 \, Vt + \frac{V^2}{254 \big(f + 0.01n\big)} = 150 \; m$

04. Ans: (b)

1

Sol: V = 60 kmph

t = 2.5 sec , f = 0.36

$$\frac{0.278 \,\text{Vt}}{\text{V}^2 / 254 \,(\text{f} + 0.01\text{n})} = \frac{6}{5}$$

$$0.278 \times 60 \times 2.5 = \frac{6}{5} \left[\frac{60^2}{254 \,(0.36 + 0.01\text{n})} \right]$$

$$n = 4.78 \simeq 4.8$$

05. Ans: (c)
Sol: V = 60 kmph, t = 2.5 sec, f = 0.35

$$SSD = 0.278 Vt + \frac{V^2}{254 f}$$

$$= 0.278 \times 60 \times 2.5 + \frac{60^2}{254 \times 0.35} = 82.1 m$$

$$SSD \text{ for single two way traffic} = 2 \times SSD$$

$$= 2 \times 82.1 = 164.2 m$$

06. Ans: (c)
Sol:
$$ISD = 2 \times 80 = 160 \text{ m}$$

:3:

Sol:

07.

There are 3 phases in the problem

- Driver lifts foot from accelerator and moves it to brake pedal – the velocity is uniform.
- 2. Deceleration increases from zero to maximum
- Braking system locks the wheels and deceleration assumed to be constant until vehicle strikes the stationary vehicle

$$A = fg = 0.75 \times 9.81 = 7.35 \text{ m/s}^2$$

During 1st phase, assume driver reaction time 0.5 sec

$$v_{o} = v_{1} + \frac{a}{2}(t_{1} - t_{o})$$

During 3rd phase, deceleration assumed assumed to be uniform

$$v_{1} = \sqrt{v_{2}^{2} + 2aS} = \sqrt{11.18^{2} + 2 \times 7.35 \times 27.45}$$

= 23 m/s = 82.76 kmph
$$v_{0} = 82.76 + \frac{7.35}{2} (0.8 - 0.5)$$

= 83.86 kmph

08.

Sol:
$$\frac{dv}{dt} = 3 - 0.04v$$

A = 3, $\beta = 0.04$, t = 5 - 0.75 = 4.25
Width of intersection = 7.5 m

Equation for distance as a function of time

$$x = \frac{\alpha t}{\beta} - \frac{\alpha}{\beta^2} (1 - e^{-\beta t}) + \frac{v_o}{\beta} (1 - e^{-\beta t})$$

$$v_o = \text{initial speed} = 0$$

$$= \frac{3(4.25)}{0.04} - \frac{3}{(0.04)^2} (1 - e^{-0.04 \times 4.25}) + 0$$

$$x = 25.62 \text{ m}$$

Intersection + length of car
 $7.5 + 6.1 = 13.6 \text{ m}$

 \therefore He can clear the intersection

10. Ans: 142

Sol: For normal driver with 6/6 vision the position of sign post is shown below.

 $S_2 = 174 - 48 = 126 \text{ m}$

 S_2 = The distance from sign post to the start of zone-y

 S_1 = Distance traveled by the vehicle during perception – reaction time for 6/6 vision driver

S = total distance required to reduce the speed to 30 kmph from design speed.

For a driver with 6/9 vision (with defective sight), the distance of sign post should be nearer as compared to driver with normal sight.

$$\therefore \text{ Modified } S_1 = \frac{6}{9} \times 48 = 32 \text{ m}$$

The position of sign post is as shown below

$$A \frac{S_1 = 32 \text{ m}}{C'} S_2 = X = ?$$

S = 174 m The distance from modified position of sign post to the start of zone-y (i.e. C'B) = 174 - 32 = 142 m.

A

Chapter- 6 Highway Geometric Design - Overtaking Sight Distance

01. Ans: (c)

Sol:

V = 80 kmph a = 2.5 kmph/sec $V_b = 50 \text{ kmphS} = 16 \text{ m}$ t = 2 sec

$$T = \sqrt{\frac{14.4 \,\mathrm{s}}{\mathrm{A}}} = \sqrt{92.16 \,\mathrm{sec}}$$

$$= 9.6 \text{ sec}$$

$$OSD = d_1 + d_2$$

= 0.278 V_b t + (0.278 V_b T + 2s)
= 193.24 m

02. Ans: (d) Sol: OSD = $d_1 + d_2 + d_3$ = 0.278V_bt+(0.278V_bT+2s)+0.278 VT

= 406.74 m

03. Ans: (c) Sol: Since division is there

$$OSD = d_1 + d_2 = 193.24 \text{ m}$$

Common data for Questions 04 & 05

04. Ans: (c)
Sol: V = u + at
u = 100 kmph
= 27.7 m/s
= 27.7 + 0.8 × 5
V = 31.72 m/s
V² - u² = 2 × as
(31.7)² - (27.7)² = 2 × 0.8 × S
S = 148.5 m
Distance traveled in next 2 sec
= 323 - 148.5
S = 174.5 m
Now, u = 31.7 m/s
S = ut + ¹/₂ at²
174.5 = (31.7 × 5) +
$$(\frac{1}{2} × a × 5^{2})$$

a = 1.2 m/sec²

05. Ans: (d)

Sol: Distance traveled in overtaking process (d₂)

$$d_{2} = (V_{b} T + 2 s) \qquad S_{1} = 25 m$$

= (V_{b} T + S_{1} + S_{2})
$$S_{2} = 20 m$$

$$T = \sqrt{\frac{4s}{a}} = 10.6 sec$$

$$d_{2} = (0.278 \times 100 \times 10) + (25 + 20)$$

= 323 mm

Common data for Questions 06 & 07

06. Ans: (c)
Sol: OSD = d₁ + d₂

$$V = 22.22 \text{ m/s}$$
 $V_b = 16.67 \text{ m/s}$
 $a = 0.7 \text{ m/s}^2$
 $S = (0.7 V_b + l) = 17.67 \text{ m}$
 $T = \sqrt{\frac{4s}{a}} = 10.05 \text{ sec}$ $t = 2 \text{ sec}$
 $OSD = d_1 + d_2 + d_3$
 $= V_b t + (V_b T + 2s) + VT$
 $= 236.21 + (22.22 \times 10.05)$
 $= 459.521 \text{ m}$
 $\approx 457.2 \text{ m}$

07. Ans: (d) Sol: Desirable length of OZ = 5 OSD = 5 $(d_1 + d_2 + d_3)$ = 5 ×459.521 = 2298 m $\simeq 2300$ m

Chapter- 7 Highway Geometric Design - Horizontal Curves

Common data for Questions 01 & 02

01. Ans: (a)

 $E = e w = 0.031 \times 7 = 0.22 m$ w.r.t centre line = 0.11 m

02. Ans: (b) Sol: w.r.t inner edge ; E = 0.22 m

03. Ans: (c) Sol: $e_{cal} = \frac{V^2}{225 R} = \frac{65^2}{225 \times 125} = 0.15$ $e_{cal} > 0.07$ $\therefore V = 65$ kmph is not suitable $0.07 + f = \frac{V^2}{127 R} \rightarrow f = \frac{65^2}{127 \times 125} - 0.07$ = 0.196 > 0.15V_a should be calculated $0.07 + 0.15 = \frac{V_a^2}{127 \times 125}$

 $V_a = 59.1$ kmph

Common data for Questions 04 to 06

04. Ans: (b)
Sol:
$$e + f = \frac{V^2}{127 R}$$

 $e + 0.15 = \frac{100^2}{127 \times 500}$
 $\Rightarrow e = 0.00748 = 0.74\%$

05. Ans: (b)
Sol:
$$f = \frac{V^2}{127 R} = \frac{100^2}{127 \times 500} = 0.157 \simeq 0.16$$

Sol:
$$f = 0$$
; $e + 0 = \frac{100^2}{127 \times 500}$
 $\Rightarrow e = 15.75\%$

07. Ans: (a)
Sol:
$$e = \frac{V^2}{225 R} = \frac{60^2}{225 \times 500} = 0.032 = 3.2\%$$

08. Ans: (b)
Sol: R_{Ruling} =
$$\frac{V^2}{127(f+e)}$$

= $\frac{100^2}{127(0.07+0.13)}$
= 393.7 m \approx 395 m

09. Ans: (a) Sol: b = 2.4 m h = 4.2 m $\frac{b}{2h} = \frac{2.4}{2 \times 4.2} = 0.286 > f$

$$\frac{d}{2h} > f$$

b

: Lateral skidding occur first

Chapter- 8 Horizontal Curves (Extra Widening)

01. Ans: (d)

Sol: $e + f = \frac{V^2}{127 R}$ $R_{\text{Ruling}} = \frac{76^2}{127 \left(\frac{1}{15} + 0.15\right)} = 209.9 \text{ m}$

02. Ans: (d) Sol: W_e = $\frac{n \ell^2}{2R} + \frac{V}{9.5\sqrt{R}}$ = $\frac{2 \times 7^2}{2 \times 209} + \frac{76}{9.5\sqrt{209}} = 0.787 \text{ m}$

:. Total width = 7 + 0.787 = 7.78 m

03. Ans: (c)
Sol: W_e =
$$\frac{n \ell^2}{2R} + \frac{V}{9.5\sqrt{R}}$$

= $\frac{2 \times 8^2}{2 \times 300} + \frac{100}{9.5\sqrt{300}} = 0.821/m$

Sol: Given
$$W_m = 0.096$$

$$\frac{\ell^2}{2R} = 0.096 \Longrightarrow R = 226.87 \,\mathrm{m}$$

$$W_{e} = W_{m} + W_{ps} = \frac{n \ell}{2 R} + \frac{v}{9.5 \sqrt{R}}$$

$$=\frac{2\times6.6^2}{2\times226.87}+\frac{80}{9.5\sqrt{226.87}}=0.75 \text{ m}$$

Ð

Chapter- 9 Set Back Distance and Curve Resistance

02. Ans: (c)
Sol:
$$m = \frac{S^2}{8R} \Rightarrow R = \frac{80^2}{8 \times 10} = 80 m$$

Common data for Questions 03 & 04

03. Ans: (c) Sol: L = 180 m S = 80 m L > S $m = \frac{S^2}{8R} = \frac{80^2}{8 \times 360} = 2.22 m$

 $m = R - R \cos(\alpha/2)$

Width of pavement is not indicated

$$\frac{\alpha}{2} = \frac{180 \text{ S}}{2 \,\pi \text{R}} = \frac{180 \times 80}{2 \,\pi \times 360} = 6.36$$

m = 360 - 360 cos (6.36)
= 2.2 m

04. Ans: (c) **Sol:** L = 180 mS = 250 mL < S $m = R - R\cos\left(\frac{\alpha}{2}\right) + \frac{S - L}{2}\sin\left(\frac{\alpha}{2}\right)$ $\frac{\alpha}{2} = \frac{180 \text{ L}}{2 \pi \text{ R}} = \frac{180 \times 180}{2 \pi \times 360} = 14.32$ $m = 360 - 360\cos(14.32)$ $+\frac{250-180}{2}\sin(14.32) = 19.88 \text{ m}$

Common data for Questions 05 & 06

05. Ans: (c)
Sol: SSD =
$$0.278 \text{ V t} + \frac{\text{V}^2}{254 \text{ f}}$$

= $(0.278 \times 80 \times 2.4) + \frac{80^2}{254 \times 0.355}$
= 124.35 m \approx 125 m

06. Ans: (d) **Sol:** S = 125 m $d = \frac{W}{4} = \frac{7}{4} = 1.75 \,\mathrm{m}$

~ -.

$$\frac{\alpha}{2} = \frac{180 \text{ S}}{2 \pi (\text{R} - \text{d})} = \frac{180 \times 125}{2 \pi (200 - 1.75)} = 18.06$$

m = R - (R - d)cos $\left(\frac{\alpha}{2}\right)$
= 11.52 m
m¹ = m - d
= 11.52 - 1.75 = 9.77 m
(or)
In approximately
m = $\frac{\text{S}^2}{8 \text{ R}} = 9.76 \text{ m}$

Problems on Curve Resistance

01.

:8:

Sol: Ratio of loss of tractive force = $T(1 - \cos\theta)$ $= T(1 - \cos 45^{\circ})$ = 0.293T

02.

Sol: Curve resistance = $T(1 - \cos\theta)$ $= T(1 - \cos 30^{\circ})$ = 0.134 T

03. **Sol:** Curve resistance = $T(1-\cos\theta)$ $= T(1 - \cos 90^{\circ})$ = 0

Chapter- 10 Highway Geometric Design -Transition Curves

Common data for Questions 01 & 02

01. Ans: (d)

Sol: $L = \frac{0.0215 V^3}{C R}$ $- \frac{0.0215 \times 60^3}{C R}$

 $=\frac{0.0215\times60^3}{0.6\times200}=38.7\,\mathrm{m}$

Considering N value $L = eN (W + W_e) = 0.07 \times 100 (7 + 0.2)$ = 50.4 m $L = \frac{2.7 V^2}{R} = \frac{2.7 \times 60^2}{200} = 48.6 m$ $\therefore \text{ The length of T.C} = 50.4 m$ (from the 3 values)

02. Ans: (d)

Sol: $S = \frac{L^2}{24 R} = \frac{(50.4)^2}{24 \times 200} = 0.53 m$

Common data for Questions 03 & 04

03. Ans: (c) Sol: C = $\frac{80}{75 + V} = \frac{80}{75 + 80} = 0.516 \text{ m/sec}^3$ 04. Ans: (a)

Sol: Considering 'C' value

$$L = \frac{0.0215 V^3}{C R} = \frac{0.0215 \times 80^3}{0.516 \times 900}$$

Considering 'N' value

$$e = \frac{V^2}{225 R} = \frac{80^2}{225 \times 900} = 0.04$$

(for mixed traffic)

$$L = \frac{e N}{2} (W + W_e)$$
$$= \frac{0.04 \times 150}{2} \times 7 = 21 m$$

Considering terrain

$$L = \frac{2.7 V^2}{R} = \frac{2.7 \times 80^2}{900} = 19.2 m$$

 \therefore Length of T.C = 23.7 m

9

Chapter- 11 Highway Geometric Design -Vertical Curves

01. Ans: (b) Sol: Length of summit parabolic curve, Assume L > S $L = \frac{NS^2}{\left(\sqrt{2H} + \sqrt{2h}\right)^2}$ $= \frac{0.09 \times 120^2}{\left(\sqrt{2 \times 1.5} + \sqrt{2 \times 0.15}\right)^2} = 249 \text{ m}$

02. Ans: (d) Sol: N = 4 - (-2) = 6% 6% \rightarrow 150 nm 4% $\rightarrow \frac{4}{6} \times 150 = 100$ m 4% $\rightarrow \frac{4}{6} \times 150 = 100$ m 3. Ans: (c) Sol: N = $\frac{1}{50} - \left(-\frac{1}{100}\right) = 0.03 = 3\%$ 1% \rightarrow 100 m 3% $\rightarrow \frac{3}{1} \times 100 = 300$ m

Common data for Q 04 & 05

04. Ans: (c) Sol: N = $\frac{1}{25} - \left(-\frac{1}{50}\right) = 0.06 = 6\%$ S = 180 m Take L > SSD L = $\frac{NS^2}{4.40} = \frac{0.06 \times 180^2}{4.4} = 441.8 \text{ m}$ ≃442 m 05. Ans: (b) Sol: 6 % → 442 m

$$4 \% \rightarrow \frac{4}{6} \times 442 = 294.7 \,\mathrm{m}$$

06. Ans: (b)
Sol: N =
$$\frac{1}{100} - \left(\frac{-1}{120}\right) = 0.0183$$

Take L > OSD
L = $\frac{NS^2}{9.6} = \frac{0.0183 \times 470^2}{9.6}$
= 421.09 m
Take L < OSD
L = $2S - \frac{9.6}{N} = 2 \times 470 - \frac{9.6}{0.0183}$
= 415.4 m
07. Ans: (a)
08. Ans: (c)
Sol: Take L ≥ OSD
L = $\frac{NS^2}{9.6}$
= $\frac{0.018 \times 500^2}{9.6}$
= 468.75 m < 500 m
Take L < OSD
L = $2S - \frac{9.6}{N}$
= $2 \times 500 - \frac{9.6}{0.018}$
= 466.67 m < 500 m
 \therefore Length of summit cure,
L ≈ 470 m

Common data for Questions 01 to 03

01. Ans: (c) **Sol:** $-n_1 = \frac{1}{25}$ V = 100 kmph $n_2 = \frac{1}{20}$ C = 0.6 m/s³ SSD = 180 m $N = (-n_1 - n_2) = n_1 + n_2$ $=\frac{1}{25}+\frac{1}{20}=0.09$ (a) $L = 0.38 (NV^3)^{1/2}$ $= 0.38 (0.09 \times 100^3)^{\frac{1}{2}}$ = 114L > SSD(b) $L = \frac{NS^2}{1.5 + (0.035S)} = \frac{0.09 \times 180^2}{1.5 + 0.035(180)}$ $= 373.86 \text{ m} \simeq 374 \text{ m}$

02. Ans: (b)

Sol: I = $\frac{1.6 \text{ NV}^2}{\text{L}}$

 $=\frac{1.6\times0.09\times100^2}{374}=3.85$

 $=\frac{4\times374.0}{9}=166.22$ m

Chapter-13 **Highway Materials and Testing** 0

01. Ans: (a) **Sol:** $k_1d_1 = k_2d_2$ $(200) \times (30) = (k_2)(75)$ $k_2 = k_{of soil} = 80 \text{ N} / \text{cm}^3$

02. Ans: (a)
03. Ans: (a)
Sol:
$$E = \frac{1.18 \text{ Pa}}{\delta} = \frac{1.18 \times 800 \times (75/2)}{2.5 \times 10^{-1}}$$

= 141600 N/cm²
= 141.6 kN/cm²

04.

Sol: Total weight = 825 + 1200 + 325 + 150 + 100= 2600 gm% wt of material; $A_1 \rightarrow \frac{825}{2600} \times 100 = 31.7\%$

$$A_2 \rightarrow \frac{1200}{2600} \times 100 = 46.15\%$$

(a)
$$V_a = \frac{G_t - G_m}{G_t} \times 100 = \frac{2.41 - 2.31}{2.41} \times 100$$

= 4.15%

(b)
$$V_b = \frac{W_b}{G_b} \times G_m = \frac{3.80}{1.05} \times 2.31 = 8.36$$

(c) VMA=
$$V_v + V_b = 4.15\% + 8.36$$

= 12.51 %

$$VFB = \frac{V_{b}}{VMA} \times 100$$
$$= \frac{8.36}{12.51} \times 100 = 67 \%$$

05.
Sol:
$$G_t = \frac{100}{\frac{W_1}{G_1} + \frac{W_2}{G_2} + \frac{W_3}{G_3}}$$

 $= \frac{100}{\frac{60}{2.72} + \frac{35}{2.66} + \frac{5}{1.0}} = 2.48$
 $V_a = 7\%$
 $V_a = \frac{G_t - G_m}{G_t} \times 100$
 $\Rightarrow 7 = \frac{2.48 - G_m}{2.48} \times 100$
 $G_m = 2.31$

06. Ans: (c)
Sol: CBR (%) =
$$\frac{P_{2.5}}{P_{st 2.5}} \times 100$$

 $= \frac{60.5}{1370} \times 100 = 4.4\%$
CBR (%) = $\frac{P_5}{P_{st 5}} \times 100$
 $= \frac{80.5}{2055} \times 100$
 $= 3.92\%$
Adopt higher one.
∴ CBR(%) = 4.4

01. Ans: 25.66 msa

Sol: Assume lane distribution factor, F = 0.75

A =
$$1000 \left(1 + \frac{7.5}{100} \right)^5 = 1435.6 \text{ CVPD}$$

N = $\frac{365 \left[(1 + 0.075)^{15} - 1 \right] \times 1435.6 \times 2.5 \times 0.75}{0.075}$
= 25.66 msa

02. Ans: (b)

Sol:
$$N = \frac{365[(1+r)^{n} - 1] \times A \times D \times F}{r}$$
$$A = P(1+r)^{n}$$
$$= 1000 (1+0.1)^{5} = 1610.51$$

N = $\frac{365[(1+0.1)^{15}-1] \times 1610.51 \times 2.5 \times 0.75}{0.1}$

= 35 msa

03. Ans: (b)
Sol:
$$N = N_1 + N_2$$

 $= \frac{365[(1+r)^n - 1] \times A \times D \times F}{r}$
 $N = \frac{365[(1+0.075)^{10} - 1][2000 \times 5 + 200 \times 6]}{0.075}$

04.

Sol:

Wheel load	EF	Number of vehicles	Total vehicles with standard axle loads
2268	1	465	1×465 = 465
2722	2.07	224	2.07×224 = 464
3175	3.84	168	3.84×168 = 645
3629	6.5	112	6.5×112 = 728
4082	10.49	75	10.49 ×75 = 787
4536	16	38	$16 \times 38 = 608$
4990	23.43	19	23.43 ×19 = 446
		1101	$\Sigma = 4143$

Compared to standard load how many times the others create the damage.

Consider the standard axle load = 2268

 $\frac{25}{100}$ × 1860 = 465 cv/day

$$\mathrm{EF} = \left[\frac{2722}{2268}\right]^4 = 2.07$$

Total number of vehicles, A = 4143 cv/day

N (msa) = $\frac{365[(1+r)^n - 1]ADF}{r} = 118 \text{ msa}$

05. Ans: 1.26

Sol:

Equivalent axle load and vehicle damage factor (VDF)

Axle load	Number of load	Equivalent factor	Equivalent axle load
	repetition		
80	1000	$(80/80)^4 = 1$	1000
160	100	$(160/80)^4 = 16$	1600
40	1000	$(40/80)^4 = 0.0625$	62.5
			2662.5

 \therefore The equivalent axle load = 2662.5 kN

VDF =
$$\frac{(1000 \times 1) + (100 \times 16) + (1000 \times 0.0625)}{1000 + 100 + 1000}$$

Chapter- 15 Rigid Pavements

01. Ans: (a)

Sol: L =
$$\frac{\delta'}{\alpha(t_2 - t_1)} = \frac{\frac{2.5/2}{10 \times 10^{-6}(45 - 10)}}{3571.42m}$$

= 35.71 m
($\delta' = 50\%$ of gap expansion joint)

Common data for Questions 02 & 03

02. Ans: (a) Sol: $\sigma_{w(e)} = \frac{C_x E \alpha t}{2}$ $= \frac{0.92 \times 3 \times 10^5 \times 10 \times 10^{-6} \times 16.2}{2}$ $= 22.36 \text{ kg/cm}^2$

03. Ans: (d)

Sol:

$$l = \left[\frac{\text{Eh}^{3}}{12k(1-\mu^{2})}\right]^{\frac{1}{4}}$$
$$= \left[\frac{3 \times 10^{5} \times 20^{3}}{12 \times 8(1-0.15^{2})}\right]^{\frac{1}{4}} = 71.1 \text{ cm}$$
$$\sigma_{w(c)} = \frac{\text{E}\alpha t}{3(1-\mu)} \sqrt{\frac{a}{l}}$$
$$= \frac{3 \times 10^{5} \times 10 \times 10^{-6} \times 16.2}{3(1-0.15)} \times \sqrt{\frac{15}{71.1}}$$
$$= 8.75 \text{ kg/cm}^{2}$$

Common data for Questions 04 & 05

Sol:
$$A_s = \frac{Bhfr_c}{\sigma_s \times 100} = \frac{\frac{1}{2} \times 7.2 \times 18 \times 1.5 \times 2400}{1700 \times 100}$$

=1.37 cm²/m
Spacing = $\frac{100 \times A}{A_s} = \frac{100 \times (\frac{\pi}{4} \times 10^2)}{1.37}$

$$= 57.32 \text{ cm} \simeq 550 \text{mm c/c}$$

05. Ans: (b)
Sol:
$$L = \frac{d\sigma_s}{2\sigma_b} = \frac{1 \times 1700}{2 \times 24.6} = 34.55 \text{ cm}$$

Common data for Questions 06 & 07

06. Ans: (c)
Sol:
$$L = \frac{2\sigma_c}{\gamma_c f} = \frac{2 \times 0.8 \times 10^4}{2400 \times 1.5} = 4.4 \text{ m c/c}$$

07. Ans: (c)
Sol: L =
$$\frac{200\sigma_s A_s}{Bh\gamma_c f}$$

= $\frac{200 \times 1200 \times \frac{\pi}{4} \times (10 \times 10^{-1})^2}{3.75 \times 20 \times 2400 \times 1.5} \times \text{no. of bars}$
= 8.72 c/c
No. of bars = $\frac{\text{width}}{0.3} = \frac{3.75}{0.3} = 12.5 \approx 13 \text{ No's}$

08. Ans: (a)

Sol:
$$\sigma_{\rm f} = \frac{\gamma_{\rm c} \, {\rm f} \, {\rm L}}{2 \times 10^4} = \frac{2400 \times 4 \times 1.2}{2 \times 10^4}$$

= 0.576 kg/cm²

Chapter- 16 Traffic Engineering

01 Ans: (a)

Sol: Time mean speed

$$=\frac{50+40+60+54+45}{5}$$

 $(V_t) = 49.8 \text{ kmph}$

$$V_{s} \Rightarrow \text{space mean speed}$$

$$\frac{1}{V} = \frac{1}{50} + \frac{1}{40} + \frac{1}{60} + \frac{1}{54} + \frac{1}{45}$$

$$V = 9.76$$

$$V_{s} = V \times n = 9.76 \times 5 = 48.80 \text{ kmph}$$

02. Ans: (a)

Sol:

Speed Range (m/s)	Frequency PCU/h r (q)	Mid-pt spe ed (V)	qv	q/v
2.5	1	3.5	3.5	0.29
7.5	4	7.5	30	0.533
11.5	0	11.5	0	0
15.5	7	15.5	108.5	0.45
	12		142.0	1.273

$$V_{t} = \frac{\sum q v}{\sum q} = \frac{142}{12} = 11.83 \text{ m/s}$$
$$V_{s} = \frac{\sum q}{\sum (q/v)} = \frac{12}{1.27} = 9.44 \text{ m/s}$$

Always the time mean speed is more than space mean speed i.e, $V_t > V_{s \setminus t}$

03. Ans: 41.8 & 40.91 Sol:

Speed of vehicle-A = $\frac{1}{1.2/60} = 50$ kmph Speed of vehicle-B = $\frac{1}{1.5/60} = 40$ kmph Speed of vehicle-C = $\frac{1}{1.7/60} = 35.3$ kmph Average travel speed $(V_t) = \frac{50 + 40 + 35.3}{3}$ = 41.8 kmph Space mean speed $(V_s) = \frac{n}{\Sigma\left(\frac{1}{V_i}\right)}$ = $\frac{3}{1000}$

$$= \frac{1}{\frac{1}{50} + \frac{1}{40} + \frac{1}{35.3}}$$

= 40.91 kmph

04. Ans: 4037

Sol: Design flow rate =
$$\frac{q}{pHF}$$

$$PHF = \frac{q}{4(q_{15})}$$

~

Volume during peak 15 min $(q_{15}) = 1000$ Peak hour volume (q) = 700 + 812 + 1000 + 635 = 3147PHF $= \frac{3147}{4 \times 1000} = 0.78$ \therefore Design flow rate $= \frac{3147}{0.78} \approx 4037$ veh/hr

05.

Sol:

Total frequency = 100

% frequency =
$$\frac{10}{1000} \times 100 = 1$$

- (i) 85^{th} percentile speed is considered as a safe speed from graph $V_{85} = 65$ kmph
- (ii) 98^{th} percentile speed is considered as a design speed from graph $V_{98} = 85$ kmph
- (iii) 15^{th} percentile speed is considered as a minimum speed on the highway from graph $V_{15}=35$ kmph

Sol: SSD =
$$0.278 \text{ Vt} + \frac{\text{V}^2}{254 \text{ f}}$$

= $0.278 \times 65 \times 2.5 + \frac{65^2}{254 \times 0.4}$
= 86.7 m
S = SSD + L = $86.7 + 5 = 91.7 \text{ m}$
C = $\frac{1000 \text{ V}}{\text{S}} = \frac{1000 \times 65}{91.7} = 708.83 \text{ veh/hr/lane}$

07. Ans: (b) Sol: t = 0.7 Assume SSD = 0.278 Vt = 12.77 mS = SSD + L $C = \frac{1000 V}{S} = 3130 veh/hr$

08. Ans: (b) Sol: S = SSD + L = 20+6 = 26 m

$$C = \frac{1000 \text{ V}}{\text{S}} = \frac{1000 \times 40}{26} = 1538 \text{ veh} / \text{hr} / \text{lane}$$

09. Ans: (c)

Sol:

Given standard deviation (SD) = 8.8kmph mean speed $\overline{x} = 33$ kmph Coefficient of variation = $\frac{SD}{\overline{x}} = \frac{8.8}{33}$ = 0.2666

1

10. Ans: (b)
Sol:

$$q = uk$$

$$U = U_{sf} \left[1 - \frac{k}{k_j} \right]$$

$$\therefore q = U_{sf} \left[1 - \frac{k}{k_j} \right] k = U_{sf} \left[k - \frac{k^2}{k_j} \right]$$
For max traffic flow;
$$\frac{d_q}{d_k} = 0$$

$$\frac{d_q}{d_k} = U_{sf} \left[1 - \frac{2k}{k_j} \right] = 0$$

$$1 - \frac{2k}{k_j} = 0$$

$$k_j = 2k$$

$$U_{sf} = 70 \text{ km/hr}$$

$$k_j = \frac{1000}{s} = \frac{1000}{7}$$

$$k = k_j/2$$

$$q = U_{sf} \left[k - \frac{k^2}{k_j} \right] = U_{sf} \left[k - \frac{k}{2} \right]$$

$$= U_{sf} \left[\frac{k_j}{2} - \frac{k_j}{4} \right]$$

$$q = 70 \times \frac{1000}{7} \times \frac{1}{4}$$

$$= 2500 \text{ veh/hr}$$

11. Ans: (d) Sol: $V_{sf} = 80$ kmph $k_i = 100 \text{ veh /km}$ $Q_{max} = \frac{V_{sf} \times k_{j}}{4} = \frac{80 \times 100}{4} = 2000 \text{ veh / hr}$ $V_s = \frac{V_{sf}}{2}$ (the speed corresponding to Q_{max} is $V_{\text{s max}}$ = $\frac{80}{2}$ = 40 kmph 12. Ans: 32.6 Sol: $q_m = 1700 \text{ veh/hr}$ $k_m = \frac{1000}{S} = \frac{1000}{5.5} = 181.81$ $q_{m} = \left(\frac{V_{m}}{2}\right) \left(\frac{k_{m}}{2}\right)$ $1700 = \left(\frac{V_{m}}{2}\right) \left(\frac{181.81}{2}\right)$ V_{sf} 37.4 V

 $V_m = 37.40$ kmph k k For q = 1000 veh/hr 181.81 $\tan \theta = \frac{V_m}{k_m}$ $V = \frac{37.4}{181.81} \times (181.81 - K)$

For normal condition

q = V.K

$$1000 = \frac{37.4}{181.81} \times (181.81 - K) \times K$$

 $4860.96 = (181.81 - K)K$
 $4860.96 = 181.81 K - K^2$
K = 149 veh/hr and K = 32.6 veh/km

13. Ans: 35.7 kmph

Sol:
$$V_{sf} = 50$$
 kmph
 $t_j = 70$ veh/km
 $q_{max} = \frac{V_{sf} + K_j}{4} = \frac{50 \times 70}{4} = 875$ veh / hr
 $K = 20$ veh/km
 $\frac{K_j}{V_{sf}} = \frac{K_j - K}{V - 0}$
 $\frac{70}{50} = \frac{70 - 20}{V} \Longrightarrow V = 35.7$ kmph

14. Ans: 1268 veh/hr Sol:

$$\frac{V_{max}}{K_{max}} = \frac{30 \text{kmph}}{(130 - 30)}$$

$$K_{max} = 130 \text{ veh/km}$$

$$V_{max} = \frac{30}{130 - 30} \times 130$$

$$= 39 \text{ kmph}$$

$$K_{max} = \left(\frac{V_{max}}{2}\right) \left(\frac{K_{max}}{2}\right)$$

$$= \frac{39}{2} \times \frac{130}{2}$$

 $\simeq 1268 \; veh/hr$

15. Ans: (b)
Sol:
$$Q_p = \frac{280 \text{ w} \left(1 + \frac{e}{\text{w}}\right) \left(1 - \frac{p}{3}\right)}{1 + \frac{\text{w}}{\text{L}}}$$

 $w = 14 \text{ m}; e = 8.4 \text{ m}$
 $L = 35 \text{ m}$
 $p = \frac{\text{Crossing traffic}}{\text{Total traffic}}$
 $= \frac{1000}{2000} = 0.5$
 $Q_p = \frac{280 \times 14 \left(1 + \frac{8.4}{14}\right) \left(1 - \frac{0.5}{3}\right)}{1 + \frac{14}{35}}$
 $= 3733.33 \text{ PCU/hr}$
16. Ans: 2064 10 yeb/hr

16. Ans: 2064.10 veh/hr

Sol: w = 6m; p = 0.5
L = 20 m; e = 5.5 m

$$= \frac{280 \times 6 \left[1 + \frac{5.5}{6}\right] \left[1 - \frac{0.5}{3}\right]}{1 + \frac{6}{20}}$$

 $Q_p = 2064.10 \text{ veh} / \text{hr}$

17. Ans: 0.8%

Sol: Weaving ratio =
$$\frac{\text{weaving traffic}}{\text{total traffic}}$$

$$= \frac{V_{13} + V_{24} + V_{43}}{V_{13} + V_{23} + V_{24} + V_{14} + V_{43} + V_{21}}$$
$$= \frac{450 + 1090 + 600 + 310}{450 + 200 + 1090 + 412 + 600 + 310}$$
Weaving ratio = 0.80%

$$y_{\rm N} = \frac{1000}{2500} \\ y_{\rm S} = \frac{700}{2500} \\ y_{\rm E} = \frac{900}{3000} \\ y_{\rm W} = \frac{550}{3000} \\ \end{bmatrix} y_{\rm EW} = 0.3$$

$$y = y_{NS} + y_{Ew}$$

= 0.4 + 0.3 = 0.7
L = 12 sec
$$C_o = \frac{1.5L + 5}{1 - y} = \frac{1.5 \times 12 + 5}{1 - 0.7}$$

= 76.7 sec \approx 77 sec

19. Ans: (d)

Sol:
$$y = 0.5 = y_a + y_b$$

 $L = 10 \text{ sec}$
 $C_o = \frac{1.5L + 5}{1 - y} = \frac{1.5 \times 10 + 5}{1 - 0.5} = 40 \text{ sec}$

20. Ans: 14.23 /veh , 1540 veh/hr

Sol: $C = S \times \frac{g}{C_o}$

 $S \rightarrow Saturation$ flow

 $g_i \rightarrow$ effective green time

$$C_o \rightarrow Cycle time/Optimum signal cycle length$$

$$\frac{g_i}{C_o} \rightarrow \text{Green Ratio}$$

$$C = 2800 \times 0.55$$

$$= 1540 \text{ veh/hr}$$

$$d_i = \frac{\frac{C_o}{2} \left(1 - \frac{g_i}{C_o}\right)^2}{1 - \frac{V_i}{s}}$$

$$= \frac{\frac{90}{2} (1 - 0.55)^2}{1 - \frac{1000}{2800}} = 14.2 \text{ /veh}$$

21. Ans: (a)

Sol: Average delay at red signal is $\frac{\text{red time}}{2}$

$$=\frac{30}{2}$$
$$= 15 \text{ sec}$$

(or)

Alternative Solution:

From fig:

The average delay = The area between cumulative arrival and cumulative departure /Total no of vehicles (or) The hatched area in above figure/total number of vehicles

... The average delay

Engineering Publications

$$= \frac{\frac{1}{2}(50)(40) - \frac{1}{2}(20)(40)}{40}$$
$$= \frac{1}{2}(50) - \frac{1}{2}(20) = 25 - 10 = 15 \operatorname{sec}$$

22. Ans: (a)

Sol:

Critical lane volume on major road is increased to 440 veh/hr/lane those for green time should be increased for major road and it remains same for minor road.

23. Ans: (a)

Sol:

Green Time = 27 sec

Yellow Time = 4 sec

Total lost time, t_L = Start up lost time

+Clearance lost time

$$= 2 + 1 = 3 \text{ sec}$$

Effective green time ; $g = G + y - t_L$

$$= 27 + 4 - 3 = 28$$
 sec

Saturation flow rate; $S = \frac{3600}{h} = \frac{3600}{2.4}$ = 1500 veh/hr $h \rightarrow Time headway$

Capacity of lane,
$$C = S \times \left(\frac{g_i}{C_o}\right)$$

= 1500 × $\left(\frac{28}{60}\right)$

= 700 veh/hr/lane

24. Ans: (d)

Sol:

: Distance travelled by bicycle = 5 km Time of travel, t = 40 - 15 = 25 min Stop time = 15 min

Speed of bicycle = $V_b = \frac{5}{25} \text{ km} / \text{min}$

Let speed of stream is V km/min Assume traffic density is the constant on the road (K = Constant).

but
$$K = \frac{q}{V}$$

During journey relative speed of stream=V- V_b

$$= \left(V - \frac{5}{25} \right)$$

K = $\frac{\left(\frac{60}{25} \right) Vechicles / min}{\left(V - \frac{5}{25} \right)}$ (1)

During stop $(V_b = 0)$

$$K = \frac{\left(\frac{45}{15}\right) \text{Vehicles/min}}{V} = \frac{45}{15V} \dots \dots \dots (2)$$

25. Ans: 2133.33 veh/hr

 V_{max} occur, when K = 0

 $V_{max} = 80$ kmph

 K_{max} occur when V = 0

$$K_{max} = \frac{80}{0.75} = 106.67 \text{ veh} / \text{km}$$

Capacity of road,
$$q = \left[\frac{K_{max} \times V_{max}}{4}\right]$$

$$q = \frac{106.67 \times 80}{4}$$

q = 2133.33 veh/hr

26. Ans: (c)

Sol: In R: 2,5 combination is possible 1,3 and 4,6 are not possible

27. Ans:

Sol: Given:

Speed of the vehicle = 60 kmphAmber duration = 4 sec Comfortable deceleration = 3m/sec^2 Car length = 4.0 mIntersection width = 14Longitudinal friction factor = 0.35Perception reaction time = 1.5 secWhen the vehicle reaches section A, he sees the amber right. Hear, two situation are possible.

There are two possibilities

(i) Driver decides to cross intersection:

Total distance to be covered

= SSD + 14 + 4.0
SSD = (vt) +
$$\frac{v^2}{2 g f}$$

= (16.67×1.5) + $\frac{(16.67)^2}{2 \times 9.81 \times 0.35}$
= 65.47 m

Total distance to be covered = 65.47 + 14 + 4 = 83.47 mTime required = $\frac{\text{distance}}{\text{speed of vehicle}}$ = $\frac{83.47}{16.67}$ = 5.0 sec > 4 sec

Engineering Publications

(ii) He decides to stop the vehicle time taken to stop the vehicle after sighting the amber light.
= Reaction time + time taken to stop the vehicle after application of brakes

$$= 1.5 + \left(\frac{60 \times \frac{5}{18} - 0}{3}\right)$$

= 1.5 + 5.55

= 7.05 sec > 4 sec

Therefore, in both the situation, the required duration is greater than the provided amber duration hence the driver's claim is correct.

28. Ans:

Sol:

Probability that the gap is greater than 8 sec P $(h \ge t) = e^{-\lambda t}$

 λ = rate of arrival per second

$$= \frac{900}{3600} = 0.25$$

t = 8 sec
P (h \ge 8) = e^{-0.25 \times 8}
P (h \ge 8) = 0.1353

Chapter- 17 Geometric Design of Railway Track

01. Ans: (b)

Sol:

Grade compensations on curves:

For BG : 0.04% per degree of curve

For MG: 0.03% per degree of curve

For NG : 0.02% per degree of curve

Therefore, in the present case, for 4° curve, the grade compensation is

 $= 0.04 \times 4 = 0.16\%$

02. Ans: (d)

03. Ans: (b)

Sol:

Ruling gradient in $\% = \frac{1}{250} \times 100 = 0.4\%$

Grade compensation at 0.04% per degree of

Curve = $0.04 \times 3 = 0.12\%$

Compensated gradient = 0.4 - 0.12

$$=\frac{0.28}{100}=\frac{1}{357}$$

04. Ans: (a) 05. Ans: (c)

06. Ans: (c)

Sol:

From circle property,

$$\frac{\ell}{2} \cdot \frac{\ell}{2} = h(2r - h)$$
$$\frac{\ell^2}{4} = 2rh - h^2$$

 h^2 is neglected (being very small)

$$\therefore h = \frac{\ell^2}{8r}$$

07. Ans: (a)

Sol:

Grade compensation $= 2 \times 0.04$ %

$$= 0.08\%$$

Stipulated ruling gradient = 0.5%

Steepest gradient = 0.5% - 0.08%

$$= 0.42\% = \frac{1}{238}$$

08. Ans: (c)

Sol:

Curve resistance =
$$0.04\% \times D^{\circ}$$

$$= 0.04 \times 4 = 0.16\%$$

Ruling gradient = $\frac{1}{150}$ = $\frac{1}{150} \times 100 = 0.67\%$

Compensated gradient
= 0.67 - 0.16
= 0.51%
$$= \frac{0.51}{100} = \frac{1}{196}$$

09. Ans: (a)

:24:

10. Ans: (b)
Sol: Grade compensation = 2 × 0.04 %
= 0.08%

Stipulated ruling gradient = 0.5%Steepest gradient = 0.5% - 0.08%

$$=0.42\% = \frac{1}{238}$$

11. Ans: 91.26 kmph Sol: Given, $D^{\circ} = 2^{\circ}$ $R = \frac{1720}{D^{\circ}} = \frac{1720}{2}$ R = 860 mmThe "weighted average" of different trains at different speeds is calculated from the equation Weighted average $= \frac{n_1V_1 + n_2V_2 + n_3V_3 + n_4V_4}{n_1 + n_2 + n_3 + n_4}$

$$V = \frac{15 \times 50 + 10 \times 60 + 5 \times 70 + 2 \times 80}{15 + 10 + 5 + 2}$$

$$V = 58.125 \text{ kmph}$$

Engineering Publications $e = \frac{GV^2}{127R} = \frac{1.676 \times 58.125^2}{127 \times 860}$ = 0.0518 m = 5.18 cmTheoretical cant = Equilibrium cant + cant deficiency = 5.18 + 7.60 = 12.78 cm $e = \frac{GV^2}{127 \text{ R}}$ $\frac{12.78}{100} = \frac{1.676 \times V^2}{127 \times 860}$ V = 91.26 kmph

According to railway boards Speed formula

 $V = 4.35\sqrt{R - 67}$ $V = 4.35\sqrt{860 - 67}$ V = 122.5 kmph

Hence maximum permissible speed (i.e lower of the two value) is 91.26 kmph

12. Ans: 86.4 m

Sol:

e = 12cm V_{max} = 85 kmph D = 7.6 cm (BG) Length of transition curves maximum of following: Transportation Engineering

- (a) Based on arbitrary gradient of 1 in 720 $L = 7.20 \times e$ $L = 7.20 \times 12 = 86.4 cm$
- (b) Based on rate of change of cant deficiency $L = 0.073 \text{ DV}_{max}$ $L = 0.073 \times 7.6 \times 85$ L = 47.158 cm
- (c) Based on rate of change of super elevation $L = 0.073 e V_{max}$

 $L = 0.073 \times 12 \times 85$

L = 74.46cm

 \therefore Take maximum L = 86.4cm

Chapter- 18 Airport Runway and Taxiway design Ð

01. Ans: (d)

Sol:

The runway length after being corrected for elevation and temperature should further be increased at the rate of 20% for every 1 % of the effective gradient for 0.5%, 10% should be increased.

So runway length after correction of temperature and elevation

$$= 2845 + 10\left(\frac{2845}{100}\right) = 3129.5 \simeq 3130 \text{ m}$$

02. Ans: (c)

Sol: Runway elevation = 1000 m (above msl) Airport reference temperature (ART) = 16°C Airport standard temperature(AST) = standard temperature at msl -6.5°C for 1

km height above msl

 $AST = 15 - 6.5 = 8.5^{\circ}C$

Rise in temperature as per

 $ICAO = 16 - 8.5 = 7.5^{\circ}C$

03. Ans: (a)

Sol:

Airport reference temperature,

ART = $\frac{2T_a + T_m}{3} = \frac{2(40) + 49}{3} = 43^{\circ}C$

04. Ans: (a)

Sol:

Wind coverage is the time in a year of time during which cross wind component is as minimum as possible.

05. Ans: (d)

Sol:

Airport reference temperature

$$ART = \frac{2T_a + T_m}{3}$$

$$=\frac{2\times25+40}{3}=30^{\circ}C$$

06. A runway is located 450 m above the mean sea level. If the aeroplane reference field is 1800 m, what is the approximate corrected runway length for elevaton?
(a) 1849 m
(b) 1889 m

06. Ans: (c)

Sol: As per ICAO recommendations the basic runway length increased at a rate of 7% for 300 rise in elevation above msl.

For 300 m
$$\rightarrow$$
 7%

Then 450 m $\rightarrow \frac{7 \times 450}{300} = 10.5\%$

Corrected length of runway

$$= 1800 + \frac{10.5}{100} \times 1800 = 1987 \text{ m}$$

07. Ans: 4 km

Sol: Runway length = 2460 m Correction for elevation (ICAO)

$$300 \text{ m} - 7\%$$

 $486 - x$
 $x = 11.34\%$

corrected length after elevation correction

$$=\frac{11.34}{100}\times2460+2460$$

= 2738.964 m

correction for temperature

$$\simeq 4000 \text{ m} = 4 \text{ km}$$

Sol:

:27:

(i) Horonjeff's equation:

$$R = \frac{0.388 \text{ w}^2}{0.5\text{T} - \text{S}}$$
$$= \frac{0.388 \times 17.7^2}{0.5(23) - \left(6 + \frac{6.62}{2}\right)} = 55.51 \text{ m}$$

Transportation Engineering

(ii) Turning radius

$$R = \frac{V^2}{125f}$$
$$= \frac{80^2}{125 \times 0.13} = 393.85 \text{ m}$$

(iii) The minimum radius of sub sonic aircraft is 135 m

∴ Turning radius = Maximum of three conditions = 393.85 m

$$R \approx 400 \text{ m}$$

09. The length of a runway under standard conditions is 2100m. The airport is to be provided at an elevation of 410 m above the mean sea level. The airport reference temperature is 32. Final length of runway?

09. Ans: 2753.455

Sol: Runway length = 2100 m Correction for elevation

410 – X

ACE Engineering Publications	: 28 : CIVIL - Postal Coaching Solutions			
x = 9.57%	280 – x			
Corrected length after elevation correction	x = 6.53%			
correction $=\frac{9.57}{100} \times 2100 + 2100$	correction = $1640 + \frac{6.53}{100} \times 1640$			
= 2300.97 m	= 1747.15 m			
Correction for temp correction	Correction for temperature (ICAO) ART = 33.5°C m Temperature gradient			
ART = 32				
Temp gradient				
1000 - 6.5	$1000 \text{ m} - 6.5^{\circ}$			
410 - x	280 m - x			
$x = 2.665^{\circ}$	200 m - X			
15 2.665	$\mathbf{X} = 1.82^{-1}$			
15 - 2.005	Temp @ airport @ 280 m elevation			
12.335	= 15 - 1.82			
$1\%^{-10}$ change	= 13.18°			
$\mathbf{x} = (32 - 12.335)$	1% increase in length for 1° above standard			
correction = $\frac{19.003}{100} \times 2300.97 + 2300.97$	temperature (33.5 – 13.18)			
= 2753.455	$= 20.32^{\circ} (33.5 - 13.18) - x$			
	x = 20.32			
10. Ans: 2253.5 m Sol: Length of runway = 1640 m	$\text{Correction} = \frac{20.32}{100} \times 1797.15 + 1797.15$			
Elevation = 280 m	= 2102.17 m			
Reference temperature = $33.5^{\circ}C$				
Effective gradient = 0.2%				
Correction for Elevation (ICAO)				
For 300 m – 7 %				

	ACE eering Publicat	ions	: 29 :	Transportation Engineering	
Chainage	Gradient	Elevation	Effective gradient	$x = \left(\frac{286 - 280}{280}\right) \times 100$	
0	-	280 m		(1640)	
300	+1%	(280 +0.01×300) = 283		= 0.36%	
900	-0.5%	$283 - \frac{0.5}{100} \times 600 = 280$	$\begin{bmatrix} 20\% \rightarrow 1\% \\ x \rightarrow 0.36\% \end{bmatrix}$		
1500	+0.5	$280 + \frac{0.5}{100} \times 690 = 283$	$x = 7.2\%^{\uparrow}$	$1070 \times 2102 17$	
1800	+1	$283 + 0.01 \times 300 = 286$		= 2253.5 m	
2100	-0.5	$286 - \frac{0.5}{100} \times 300 = 284.5$			
2700	0.4	$\frac{284.5-}{100} \times 600 = 282.1$			
3000	-0.1	$\frac{282.1-}{\frac{0.1}{100} \times 300} = 281.8$			