

ELECTRONICS & COMMUNICATION ENGINEERING

Volume - I: Study Material with Classroom Practice Questions

Study Material with Classroom Practice solutions

То

Digital Circuits & Microprocessors

CONTENTS

Chapter No.	Name of the Chapter	Page No.
01	Number Systems	03 - 04
02	Logic Gates and Boolean Algebra	05 – 06
03	K – Maps	07 - 07
04	Combinational Circuits	08 - 10
05	Sequential Circuits	11 - 13
06	Logic Gate Families	14 - 14
07	Semiconductor Memories	15 - 16
08	A/D & D/A Converters	17 - 18
09	Architecture, Pin Details of 8085 & Interfacing with 8085	19 – 20
10	Instruction Set of 8085 & Programming with 8085	21 - 22

Number Systems

Chapter

Class Room Practice Solutions

01. Ans: (d)

Sol:
$$135_x + 144_x = 323_x$$

$$(1 \times x^2 + 3 \times x^1 + 5 \times x^0) + (1 \times x^2 + 4 \times x^1 + 4 \times x^0)$$

= $3x^2 + 2x^1 + 3x^0$

$$\Rightarrow x^2 + 3x + 5 + x^2 + 4x + 4 = 3x^2 + 2x + 3$$

$$x^2 - 5x - 6 = 0$$

$$(x-6)(x+1) = 0$$
 (Base cannot be negative)

Hence x = 6.

As per the given number x must be greater than 5. Let consider x = 6

$$(135)_6 = (59)_{10}$$

$$(144)_6 = (64)_{10}$$

$$(323)_6 = (123)_{10}$$

$$(59)_{10} + (64)_{10} = (123)_{10}$$

So that
$$x = 6$$

02. Ans: (a)

Sol: 8-bit representation of $+127_{10}$

$$= 01111111_{(2)}$$

1's complement representation of

$$-127 = 10000000$$
.

2's complement representation of

$$-127 = 10000001$$
.

No. of 1's in 2's complement of

$$-127 = m = 2$$

No. of 1's in 1's complement of

$$-127 = n = 1$$

$$\therefore$$
 m: n = 2:1

03. Ans: (c)

Sol: In 2's complement representation the sign bit can be extended towards left any number of times without changing the value. In given number the sign bit is 'X₃', hence it can be extended left any no. of times.

04. Ans: (c)

05. Ans: 5

Sol: Symbols used in this equation are 0,1,2,3 Hence base or radix can be 4 or higher

$$(312)_x = (20)_x (13.1)_x$$

$$3x^2 + 1x + 2x^0 = (2x+0)(x+3x^0+x^{-1})$$

$$3x^2+x+2 = (2x) \left(x+3+\frac{1}{x}\right)$$

$$3x^2 + x + 2 = 2x^2 + 6x + 2$$

$$x^2 - 5x = 0$$

$$x(x-5)=0$$

$$x = 0$$
(or) $x = 5$

x must be x > 3, So x = 5

06. Ans: 3 possible solutions

Sol:
$$123_5 = x8_y$$

$$1 \times 5^2 + 2 \times 5^1 + 3 \times 5^0 = x.y^1 + 8 \times y^0$$

$$25 + 10 + 3 = xy + 8$$

$$\therefore xy = 30$$

Possible solutions:

i.
$$x = 1, y = 30$$

ii.
$$x = 2, y = 15$$

iii.
$$x = 3$$
, $y = 10$

3 possible solutions

07. Ans: (1)

Sol: The range (or) distinct values

For 2's complement
$$\Rightarrow$$
 $-(2^{n-1})$ to $+(2^{n-1}-1)$

For sign magnitude

$$\Rightarrow$$
 -(2ⁿ⁻¹-1) to +(2ⁿ⁻¹-1)

Let $n = 2 \Rightarrow$ in 2's complement

$$-(2^{2-1})$$
 to $+(2^{2-1}-1)$

$$-2$$
 to $+1 \Rightarrow -2, -1, 0, +1 \Rightarrow x = 4$

n = 2 in sign magnitude $\Rightarrow -1$ to $+1 \Rightarrow y = 3$

$$x - y = 1$$

Chapter

Logic Gates & Boolean Algebra

Class Room Practice Solutions

01. Ans: (c)

Sol: Given 2's complement numbers of sign bits are x & y. z is the sign bit obtained by adding above two numbers. .: Overflow is indicated by $= \overline{x} \overline{y} z + x y \overline{z}$

Examples

1.
$$A = +7$$
 0111
 $B = +7$ 0111
14 1110 $\Rightarrow \overline{x} \overline{y} z$
2. $A = +7$ 0111
 $B = +5$ 0101
12 1100 $\Rightarrow \overline{x} \overline{y} z$
3. $A = -7$ 1001
 $B = -7$ 1001
 -14 10010 $\Rightarrow x y \overline{z}$

4.
$$A = -7$$
 0111

$$B = -5$$
 0101

$$-12$$
 $10100 \Rightarrow x y \overline{z}$

02. Ans: (b)

Sol: Truth table of XOR

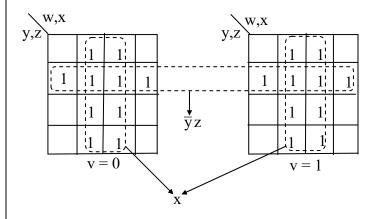
A	В	o/p
0	0	0
0	1	1
1	0	1
1	1	0

Stage 1:

Given one i/p = 1 Always.

$$1 \quad 0 \quad 1 \quad = \quad \overline{X}$$

For First XOR gate
$$o/p = \overline{X}$$

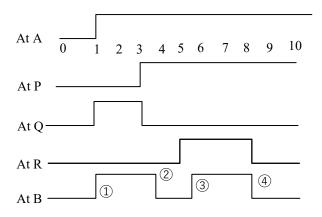

Stage 2:

For second XOR gate o/p = 1.

Similarly for third XOR gate $o/p = \overline{X}$ & for fourth o/p = 1

For Even number of XOR gates o/p = 1For 20 XOR gates cascaded o/p = 1.

03. Ans: (b) Sol:


04. Ans: (c)

Sol:
$$f = f_1 f_2 + f_3$$

05. Ans: (d)

Sol:

06. Ans: (c)

Sol: For all cases option A, B, D not satisfy.

Sol:
$$M(a,b,c) = ab + bc + ca$$

$$\overline{M(a,b,c)} = \overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c}$$

$$M(a, b, \overline{c}) = ab + b\overline{c} + \overline{c}a$$

$$M(\overline{M(a,b,c)},M(a,b,\overline{c}),c)$$

$$= (\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c})(ab + b\overline{c} + a\overline{c})$$

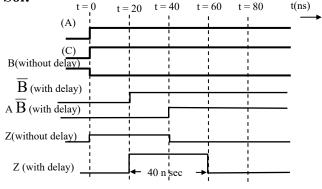
$$+(ab+\overline{b}\overline{c}+\overline{c}a)c+(\overline{b}\overline{c}+\overline{a}\overline{b}+\overline{a}\overline{c})c$$

$$= \left(\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c}\right)(ab + b\overline{c} + a\overline{c})$$

$$+(\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c})(c) + abc$$

$$= a\overline{b}\overline{c} + \overline{a}b\overline{c} + abc + \overline{a}\overline{b}c$$

$$= \overline{c}[a\overline{b} + \overline{a}b] + c[ab + \overline{a}\overline{b}]$$


$$=\sum m(1,2,4,7)$$

$$\therefore$$
 M (x, y, z) = a \oplus b \oplus c

Where
$$x = \overline{M(a,b,c)}$$
, $y = M(a,b,\overline{c})$, $z = c$

08. Ans: 40

Sol:

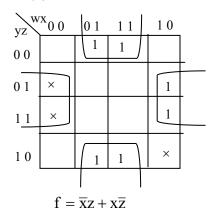
∴ Z is 1 for 40 nsec

09. Ans: (c)

Sol: Logic gates
$$\overline{X} + Y = \overline{X}\overline{Y} = \overline{XY_1}$$

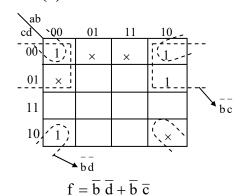
Where
$$Y_1 = \overline{Y}$$

It is a NAND gate and thus the gate is 'Universal gate'.

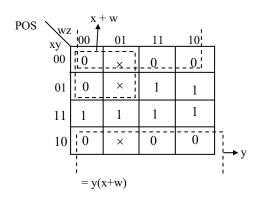

Chapter

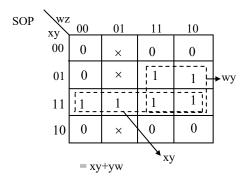
K - Maps

Class Room Practice Solutions


Ans: (b) 01.

Sol:




02. Ans: (b)

Sol:

03. Sol:

SOP: x y + y wPOS: y(x + w)

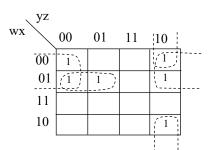
04. Ans: (a)

05. Ans: (c)

Sol:

CAB	00	01	11	10
0	(Î	ì,	0	0
1	0	(Į	Ĵ),	0

$$F(A, B, C) = \overline{A}\overline{C} + BC$$


06. Ans: 1

Sol: After minimization = $(\overline{\overline{A} + \overline{B} + \overline{C} + \overline{D}})$ = ABCD

: only one minterm.

07. Ans: 3

Sol: $\overline{w} \, \overline{z} + \overline{w} \, x \overline{y} + \overline{x} \, y \overline{z}$

Combinational Circuits

Class Room Practice Solutions

01. Ans: (d)

Sol: Let the output of first MUX is "F₁"

$$F_1 = AI_0 + AI_1$$

Where A is selection line, I_0 , $I_1 = MUX$ Inputs

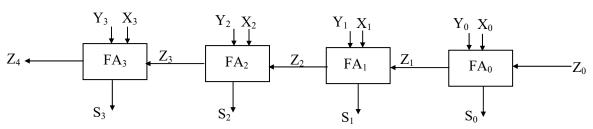
$$F_1 = \overline{S}_1.W + S_1.\overline{W} = S_1 \oplus W$$

Output of second MUX is

$$F = \overline{A}.I_0 + A.I_1$$

$$F = \overline{S}_2.F_1 + S_2.\overline{F}_1$$

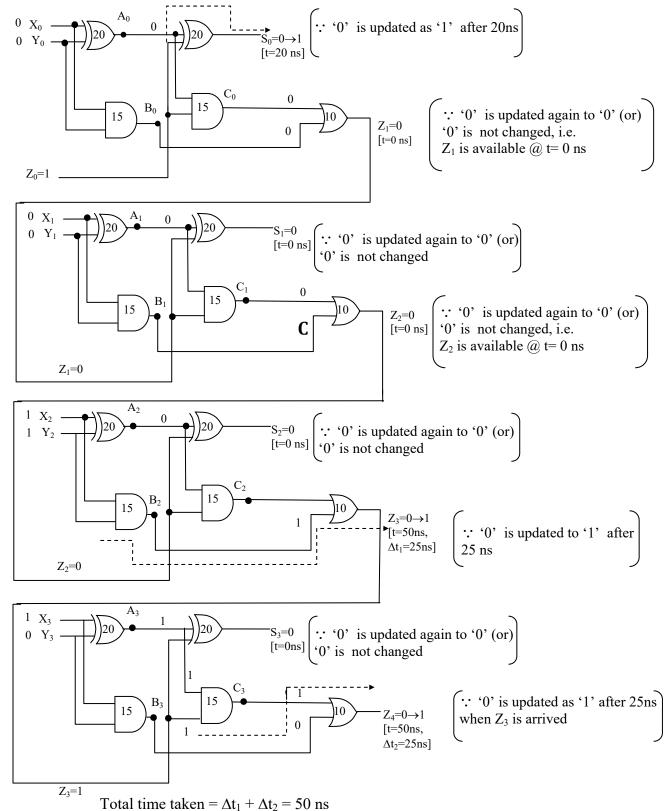
$$F = S_2 \oplus F_1$$


But
$$F_1 = S_1 \oplus W$$

$$F = S_2 \oplus S_1 \oplus W$$

i.e.,
$$F = W \oplus S_1 \oplus S_2$$

02. Ans: 50


Sol:

Initially all the output values are '0', at t = 0, the inputs to the 4-bit adder are changed to $X_3X_2X_1X_0 = 1100$, $Y_3Y_2Y_1Y_0 = 0100$

---- indicates critical path delay to get the output

i.e. critical time (or) maximum time is taken for Z₄ to get final output as '1'

:10: **Digital**

03. Ans: (a)

Sol: The given circuit is binary parallel adder/subtractor circuit. It performs A+B, A-B but not A + 1 operations.

K	C_0	Operation
0	0	A+B (addition)
0	1	A+B+1(addition with carry)
1	0	$A+\overline{B}$ (1's complement addition)
1	1	$A + \overline{B} + 1$ (2's complement subtraction)

04. Ans: (d)

Sol: It is expansion of 2:4 decoders to 1:8 demultiplexer A_1 , A_0 must be connected to S_1 , S_0 i.e., $R = S_0, S = S_1$

Q must be connected to S_2 i.e., $Q = S_2$

P is serial input must be connected to D_{in}

05. Ans: 6

Sol:
$$T = 0 \rightarrow NOR \rightarrow MUX 1 \rightarrow MUX 2$$

Delay =
$$2ns + 1.5ns + 1.5ns = 5ns$$

$$T = 1 \rightarrow NOT \rightarrow MUX 1 \rightarrow NOR \rightarrow MUX 2$$

Delay =
$$1 \text{ns} + 1.5 \text{ns} + 2 \text{ns} + 1.5 \text{ns} = 6 \text{ns}$$

Hence, the maximum delay of the circuit is 6ns

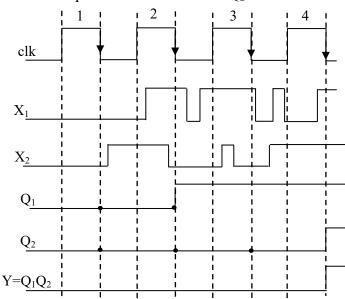
06. Ans: -1

Sol: When all bits in 'B' register is '1', then only it gives highest delay.

∴ '-1' in 8 bit notation of 2's complement is 1111 1111

Sequential Circuits

Chapter


Class Room Practice Solutions

01. Ans: (c)

Sol: Given Clk, X_1 , X_2

Output of First D-FF is Q₁

Output of Second D-FF is Q2

02. Ans: 4

Sol: In the given first loop of states, zero has repeated 3 times. So, minimum 4 number of Flip-flops are needed.

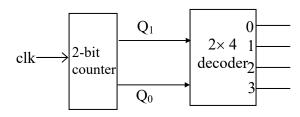
03. Ans: 7

Sol: The counter is cleared when $Q_DQ_CQ_BQ_A = 0110$

Clk	Q _D	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	0	0	0	0
1	0	0	0	1
1 2 3	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
4 5 6	0	1	1	0
7	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$

As the clear input is given to be synchronous so it waits upto the next clock pulse to clear the counter & hence the counter get's cleared during the 7th clock pulse.

 \therefore mod of counter = 7


04. Ans: (b)

Sol: The given circuit is a mod 4 ripple down counter. Q₁ is coming to 1 after the delay of $2\Delta t$.

CLK	\mathbf{Q}_1	\mathbf{Q}_0
	0	Ó
1	1	12
2	1	0,2
3	0	1, 2
4	0	05

05. Ans: (c)

Sol: Assume n = 2

Outputs of counter is connected to inputs of decoder

Counter outputs		Decoder inputs		Decoder outputs			
Q_1	Q_0	a	b	d_3	d_2	d_1	d_0
0	0	0	0	0	0	0	1
0	1	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0

The overall circuit acts as 4-bit ring counter

$$\therefore$$
 k = 2^2 = 4, k-bit ring counter

06. Ans: (b)

Sol:

CLK	Serial in=	A B C D
	$B \oplus C \oplus D$	
0	_	1 0 1 0
1	1	1 1 0 1
2	$0 \longrightarrow$	0 1 1 0
3	0	0 0 1 1
4	0	0 0 0 1
5	1	1 0 0 0
6	$0 \longrightarrow$	0 1 0 0
7	1	1 0 1 0

07. Ans: (b)

Sol:

J	K	Q	$\overline{\overline{Q}}_n$	$T = (J + Q_n)$	Q_{n+1}
				$\left(K + \overline{Q}_{n}\right)$	
0	0	0	1	0.1 = 0	0 ζ
0	0	1	0	1.0 = 0	$1 \int Q_n$

0	1	0	1	0.1 = 0	0 ე
0	1	1	0	1.1 = 1	$0 \downarrow 0$
1	0	0	1	1.1 = 1	1 γ
1	0	1	0	1.0 = 0	1 5 1
1	1	0	1	1.1 = 1	17
1	1	1	0	1.1 = 1	$0^{\int \overline{Q}_n}$

\int_{K}	Q _n 00	01	11	10	
0			/î`\		
			1 1		
1	1_)		\1/		

$$T = J \overline{Q_n} + KQ_n = (J+Q_n) (K + \overline{Q_n})$$

08. Ans: 1.5

Sol:

C <i>l</i> k	Q_1	Q_2	Q_3	Q ₄	Q_5	$Y = Q_3 + Q_5$
0	0_	1_	0	1_	0	0
1	0_	0_	1	0	1	1
2	1	0_	0_	1	0	0
3	0_	1	0_	0_	1	1
4	1	0	1	0_	0	1
5	0	1	0	1	0	0

The waveform at OR gate output, Y is [A = +5V]

Average power

$$P = \frac{V_{Ao}^{2}}{R} = \frac{1}{R} \left[\int_{T_{1} \to \infty}^{Lt} \frac{1}{T_{1}} \int_{o}^{T_{1}} y^{2}(t) dt \right] = \frac{1}{RT_{1}} \left[\int_{T}^{2T} A^{2} dt + \int_{3T}^{5T} A^{2} dt \right]$$
$$= \frac{A^{2}}{RT_{1}} \left[(2T - T) + (5T - 3T) \right] = \frac{A^{2} . 3T}{R(5T)} = \frac{5^{2} . 3}{10 \times 5} = 1.5 \text{ mw}$$

09. Ans: (b)

Sol:

Present	Next	State	Output (Y)		
State	X = 0	X = 1	X = 0	X = 1	
A	A	Е	0	0	
В	C	Α	1	0	
C	В	Α	1	0	
D	A	В	0	1	
Е	A	C	0	1	

Step (1):

By replacing state B as state C then state B, C are equal.

Reducing state table							
Present state Next state							
$X = 0 \mid X = 1$							
A	A	Е					
В	В	A					
В	В	A					
D A B							
Е	A	В					

Step (2):

Reducing state table						
Present state	Present state Next state					
	X = 0	X = 1				
A	A	Е				
В	В	A				
D	A	В				
E	A	В				

State D, E are equal, remove state E and replace E with D in next state.

Reducing state table							
Present state	sent state Next state						
	$X = 0 \mid X = 1$						
A	A D						
В	B B A						
D A B							
D	A	В					

Finally reduced state table is

Reduced state table								
Present state Next state								
$X = 0 \mid X = 1$								
A	A	D						
В	В	A						
D								

:. 3 states are present in the reduced state table

10. Ans: (c)

Sol: State table for the given state diagram

State	Input	Output
S_0	0	1
S_0	1	0
S_1	0	1
S_1	1	0

Output is 1's complement of input.

11. Ans: (c)

Sol: In state (C), when XYZ = 111, then Ambiguity occurs

Because, from state (C)

 \Rightarrow When X = 1, Z = 1

 \Rightarrow N.S is (A)

When Y = 1, $Z = 1 \Rightarrow N.S$ is (B)

Logic Gate Families

Chapter

Class Room Practice Solutions

01. Ans: (b)

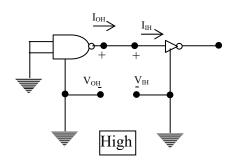
Sol: V_{OH}(min):-

(High level output voltage)

The minimum voltage level at a Logic circuit output in the logic '1' state under defined load conditions.

V_{OL}(max):-

(Low level output voltage)


The maximum voltage level at a logic circuit output in the Logical '0' state under defined load conditions.

V_{IL}(max):- (Low level input voltage)

The maximum voltage level required for a logic '0' at an input. Any voltage above this level will not be accepted as a Low by the logic circuit.

V_{IH}(min) :- (High level Input voltage)

The minimum voltage level required for logic '1' at an input. Any voltage below this level will not be accepted as a HIGH by the Logic circuit.

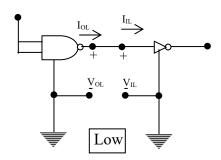


Fig: currents and voltages in the two logic states.

02. Ans: (b)

Sol: Fan out is minimum in DTL

(High Fan-out = CMOS)

Power consumption is minimum in CMOS. Propagation delay is minimum in ECL (fastest = ECL)

03. Ans: (b)

Ans: (d) **04.**

05. Ans: (b)

Sol: As per the description of the question, when the transistor Q₁ and diode both are OFF then only output z = 1.

X	Y	Z	Remarks
0	0	0	Q ₁ is OFF, Diode is ON
0	1	1	Q ₁ is OFF, Diode is OFF
1	0	0	Q ₁ is ON, Diode is OFF
1	1	0	Q ₁ is ON, Diode is OFF

Hence $Z = \overline{X}Y$

Semiconductor Memories

Chapter

Class Room Practice Solutions

01. Ans: (b)

Sol: Square of a 4 – bit number can be at most 8 – bit number.

{ i.e
$$(1111)_2 = (15)_{10}$$

 $[(15)_{10}]^2 = (225)_{10}$ }.

Therefore ROM requires 8 data lines.

Data is with size of 4 bits

ROM must require 4 address lines and 8 data lines

ROM =
$$2^n \times m$$

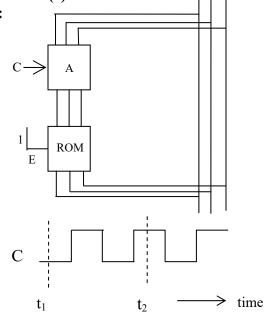
 $n = inputs(address lines),$
 $m = output lines$
 $n = 4, m = 8.$

02. Ans: (a)

Sol: ROM is used to design a combinational circuit. The number of address lines of the ROM is equal to the number of input variables in the truth table.

> ROM is represented as $2^n \times m$ where 2^n inputs and m output lines.

[Where n = address bits]

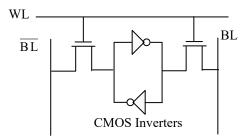

Ans: (b) Sol:

8	4	2	1	2	4	2	1	2421
	i/p s				o/p s			
X_3	X_2	X_1	X_0	Y_3	Y_2	\mathbf{Y}_1	Y_0	
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	0	2
0	0	1	1	0	0	1	1	3
0	1	0	0	0	1	0	0	4
0	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	6
0	1	1	1	1	1	0	1	7
1	0	0	0	1	1	1	0	8
1	0	0	1	1	1	1	1	9
1	0	1	0	×	×	×	×	
1	0	1	1	×	×	×	×	
1	1	0	0	×	×	×	×	
1	1	0	1	×	×	×	×	
1	1	1	0	×	×	×	×	
1	1	1	1	×	×	×	×	

The outputs are in 2 4 2 1 BCD number

04. Ans: (c)

Sol:


At the rising edge of the First clock pulse the content of location $(0110)_2 = 6 \Rightarrow 1010$

appears on the data bus, at the rising of the second clock pulse the content of location $(1010)_2 = 10_2 \Rightarrow 1000$ appears on the data bus.

Ans: (b) 05.

Sol: 1-bit SRAM memory cell is

In 2 Inverters, output of the 1st Inverter is connected to Gate Input of 2nd Inverter and vice versa.

Chapter 8

A/D & D/A Converters

Class Room Practice Solutions

01. Ans: (b)

Sol:

CLK	Counter	Decoder	V_0
	$Q_2 Q_1 Q_0$	$\mathbf{D_3} \; \mathbf{D_2} \mathbf{D_1} \; \mathbf{D_0}$	
1	0 0 0	0 0 0 0	0
2	0 0 1	0 0 0 1	1
3	0 1 0	0 0 1 0	2
4	0 1 1	0 0 1 1	3
5	1 0 0	1 0 0 0	8
6	1 0 1	1 0 0 1	9
7	1 1 0	1 0 1 0	10
8	1 1 1	1 0 1 1	10
			II

02. Ans: (b)

Sol:

 $R_{equ} = (((((2R||2R) + R)||2R) + R)||2R) + R)||2R)$

$$R_{equ} = R = 10k\,\Omega$$
 .

$$I = \frac{V_R}{R} = \frac{10V}{10k} = 1mA.$$

Current division at $\frac{I}{16}$

$$=\frac{1\times10^{-3}}{16}=62.5\,\mu\text{A}$$

03. Ans: (c)

Sol: Net current at inverting terminal,

$$I_{i} = \frac{I}{4} + \frac{I}{16} = \frac{5I}{16}$$

$$V_0 = -I_i R = -\frac{5I}{16} \times 10k\Omega$$
$$= \frac{-5 \times 1 \times 10^{-3} \times 10 \times 10^3}{16} = -3.125V$$

04. Ans: (d)

Sol: Given that $V_{DAC} = \sum_{n=0}^{3} 2^{n-l} b_n$ Volts

$$V_{DAC} = 2^{-1}b_0 + 2^0b_1 + 2^1b_2 + 2^2b_3$$

$$\Rightarrow$$
 V_{DAC} = $0.5b_0 + b_1 + 2b_2 + 4b_3$

Initially counter is in 0000 state

Up	V _{DAC} (V)	o/p of
counter o/p		comparator
b ₃ b ₂ b ₁ b ₀		
0 0 0 0	0	1
0 0 0 1	0.5	1
0 0 1 0	1	1
0 0 1 1	1.5	1
0 1 0 0	2	1
0 1 0 1	2.5	1
0 1 1 0	3	1
0 1 1 1	3.5	1
1 0 0 0	4	1
1 0 0 1	4.5	1
1 0 1 0	5	1
1 0 1 1	5.5	1
1 1 0 0	6	1
1 1 0 1	6.5	0

When $V_{DAC} = 6.5 \text{ V}$, the o/p of comparator is '0'. At this instant, the clock pulses to the counter are stopped and the counter remains in 1101 state.

:. The stable reading of the LED display is 13.

05. Ans: (b)

Sol: The magnitude of error between V_{DAC} & V_{in} at steady state is $\left|V_{DAC} - V_{in}\right| = \left|6.5 - 6.2\right|$ = 0.3 V

06. Ans: (a)

Sol: In Dual slope

$$\begin{split} ADC & \Rightarrow V_{in}T_1 = V_R.T_2 \\ & \Rightarrow V_{in} = \frac{V_RT_2}{T_1} \\ & = \frac{100\,\text{mV} \times 370.2\,\text{ms}}{300\,\text{ms}} \end{split}$$

DVM indicates = 123.4

07. Ans: (d)

Sol: Ex:
$$f_{in} = 1 \text{ kHz} \rightarrow f_s = 2 \text{ kHz}$$

 $f_{in} = 25 \text{ kHz} \leftarrow f_s = 50 \text{ kHz}$

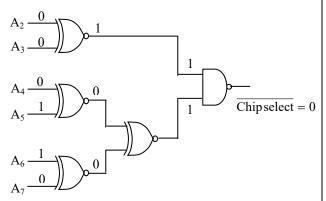
- 1. Max conversion time = $2^{N+1}T = 2^{11}.1 \mu s$ = 2048 μs
- 2. Sampling period = $T_s \ge maximum$ conversion time

$$T_s \geq 2048~\mu s$$

3. Sampling rate
$$f_s = \frac{1}{T_s} \le \frac{1}{2048 \times 10^{-6}}$$

$$f_s \le 488$$
 $f_s \le 500 \text{ Hz}$

4.
$$f_{in} = \frac{f_s}{2} = 250 \,\text{Hz}$$



Architecture, Pin Details of 8085 & Interfacing with 8085

Class Room Practice Solutions

01. Ans: (a)

Sol: $A_0 & A_1$ are used for line selection A_2 to A_7 are used for chip selection

∴ Address space is 60H to 63H A₀ to A₁₁ are used for line selection A_{12} to A_{15} are used for chip selection

_	A_{11} A_0	$A_{15} A_{14} A_{13} A_{12}$				
=E000H	0 0	0	1	1	1	
!	 	1	!	:	:	
!				i	į	
				-		
1	'	i	;	;	;	
=EFFFH	11	0	1	1	1	

02. Ans: (d)

Sol:

- Both the chips have active high chip select inputs.
- Chip 1 is selected when $A_8 = 1$, $A_9 = 0$ Chip 2 is selected when $A_8 = 0$, $A_9 = 1$
- Chips are not selected for combination of 00 & 11 of A₈ & A₉
- Upon observing A₈ & A₉ of given address Ranges, F800 to F9FF is not represented

03. Ans: (d)

Sol: The I/O device is interfaced using "Memory Mapped I/O" technique. The address of the Input device is

 $A_{15} \ A_{14} \ A_{13} \ A_{12} \ A_{11} \ A_{10} \ A_{9} \ A_{8} \ A_{7} \ A_{6} \ A_{5} \ A_{4} \ A_{3} \ A_{2} \ A_{1} \ A_{0}$

The Instruction for correct data transfer is = LDA F8F8H

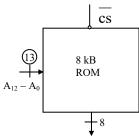
04. **Ans: (b)**

Sol:

Out put 2 of 3×8 Decoder is used for selecting the output port. : Select code is 010

This mapping is memory mapped I/o

05. Ans: (d)


Sol

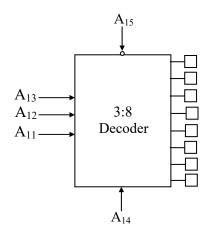
	. (,					
A_{15}	A_{14}	$A_{13} \\$	A_{12}	A_{11}	A_{10}	A_9 A_0	
0	0	0	0	1	0	0 0	=0800H
		!				-	
0	0	0	0	1	0	1 1	=0BFFH
0	0	0	1	1	0	0 0	=1800H
0	0	0	1	1	0	1 1	=1BFFF
0	0	1	0	1	0	0 0	=2800H
		1					
0	0	1	0	1	0	1 1	=2BFFH
0	0	1	1	1	0	0 0	=3800H
		-					:
0	0	1	1	1	0	1 1	=3BFFH

06. Ans: (a)

Sol: Address Range given is

	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	A_{10}	$A_9 A_8$	A_7	A_6	$A_5 A_4$	A_3	A_2	A_1	A_0
$1000H \rightarrow $	0	0	0	1	0	0	0 0	0	0	0 0	0	0	0	0
$2FFFH \rightarrow$	0	0	1	0	1	1	1 1	1	1	1 1	1	1	1	1

To provide cs as low, The condition is


 $A_{15} = A_{14} = 0$ and $A_{13} A_{12} = 01$ (or) (10)

i.e $A_{15} = A_{14} = 0$ and A_{13} A_{12} shouldn't be 00, 11.

Thus it is
$$A_{15}+A_{14}+[A_{13}A_{12}+\,\overline{A_{13}},\overline{A_{12}}\,]$$

07. Ans: (a)

Sol:

 A_{15} , A_{14} are used for chip selection

 A_{13} , A_{12} , A_{11} are used for input of decoder

A ₁₅ A ₁₄	A_{13} A_{12} A_{11}	A_{10} A_0
Enable of decoder	Input of decoder	Address of chip

Size of each memory block = $2^{11} = 2K$

Instruction set of 8085 & **Programming with 8085**

Class Room Practice Solutions

Ans: (c)

Sol:

6010H : LXI H,8A79H ; (HL) = 8A79H

6013H : MOV A, L $; (A) \leftarrow (L) = 79$

6014H : ADD H ; (A) = 0111 1001

; (H) = 1000 1010

(A) = 0000 0011

CY = 1, AC = 1

6015H: DAA ; 66 Added to (A)

since CY=1 &

AC = 1

(A) = 69H

6016H : MOV H,A ; (H)←(A) = 69H

6017H : PCHL $; (PC) \leftarrow (HL) = 6979H$

02. Ans: (c)

Sol: 0100H : LXI SP, 00FFH ; (SP) = 00FFH

0103H : LXI H, 0107 H ; (HL) = 0107H

0106H : MVI A, 20H ; (A) = 20H

 $0108H : SUB M ; (A) \leftarrow (A) - (0107)$

; (0107) = 20H

(A) = 00H

The contents of Accumulator is 00H

03. Ans: (c)

Sol: SUB1 : MVI A, 00H $A \leftarrow 00H$

CALL SUB2 → program will shifted to

SUB 2 address location

SUB 2 : INR A \rightarrow

A

01H

RET \rightarrow returned to the main program

:. The contents of Accumulator after execution of the above SUB2 is 02H

04. Ans: (c)

Sol: The loop will be executed until the value in register equals to zero, then,

Execution time

=9(7T+4T+4T+10T)+(7T+4T+4T+7T)+7T

= 254T

05. Ans: (d)

Sol: H=255 : L=255, 254, 253, ----0

H=254 : L=0, 255, 254, ----0

: L = 0,255,254,253,---0H=1

H=0

In first iteration (with H=255), the value in L is decremented from 255 to 0 i.e., 255 times

In further remaining 254 iterations, the value in L is decremented from 0 to 0 i.e., 256 times

: 'DCRL' instruction gets executed for

 $\Rightarrow [255 + (254 \times 256)]$

 \Rightarrow 65279 times

06. Ans: (a)

Sol: "STA 1234H" is a 3-Byte Instruction and it requires 4 Machine cycles (Opcode fetch, Operand1 Read, Operand2 Read, Memory write). The Higher order Address $(A_{15} - A_8)$ sent in 4 machine cycles is as follows

Given "STA 1234" is stored at 1FFEH

i.e., Address Instruction

1FFE, 1FFF, 2000: STA 1234H

Machine cycle	Address (A ₁₅ -A ₀)	Higher order address (A ₁₅ -A ₈)
1. Opcode fetch	1FFEH	1FH
2. Operand1 Read	1FFFH	1FH
3. Operand2 Read	2000H	20H
4. Memory Write	1234H	12H

i.e. Higher order Address sent on A₁₅-A₈ for

4 Machine Cycles are 1FH, 1FH, 20H, 12H.

07. Ans: (d)

Sol: The operation SBI BE_{H} indicates $A-BE \rightarrow A$ where A indicates accumulator Thus the result of the subtraction operation is stored in the accumulator and the contents of accumulator are changed.

08. Ans: (c)

Sol: If the content in register B is to be multiplied with the content in register C, the contents of register B is added to the accumulator (initial value of accumulator is 0) for C times.