

INSTRUMENTATION ENGINEERING

DIGITAL ELECTRONICS & MICROPROCESSORS

Volume-1: Study Material with Classroom Practice Questions

Number Systems

(Solutions for Vol-1_Classroom Practice Questions)

01. Ans: (d)

Sol:
$$135_x + 144_x = 323_x$$

$$(1 \times x^2 + 3 \times x^1 + 5 \times x^0) + (1 \times x^2 + 4 \times x^1 + 4 \times x^0)$$

= $3x^2 + 2x^1 + 3x^0$

$$\Rightarrow$$
 $x^2+3x+5+x^2+4x+4 = 3x^2+2x+3$

$$x^2 - 5x - 6 = 0$$

(x-6)(x+1) = 0 (Base cannot be negative)

Hence x = 6.

As per the given number x must be greater than 5. Let consider x = 6

$$(135)_6 = (59)_{10}$$

$$(144)_6 = (64)_{10}$$

$$(323)_6 = (123)_{10}$$

$$(59)_{10} + (64)_{10} = (123)_{10}$$

So that x = 6

02. Ans: (a)

Sol: 8-bit representation of

$$+127_{10} = 01111111_{(2)}$$

1's complement representation of

$$-127 = 10000000$$
.

2's complement representation of

$$-127 = 10000001$$
.

No. of 1's in 2's complement of

$$-127 = m = 2$$

No. of 1's in 1's complement of

$$-127 = n = 1$$

$$\therefore$$
 m: n = 2:1

03. Ans: (c)

Sol: In 2's complement representation the sign bit can be extended towards left any number of times without changing the value. In given number the sign bit is 'X₃', hence it can be extended left any number of times.

04. Ans: (c)

Sol: Binary representation of $+(539)_{10}$:

$$(+539)_{10} = (10000 \ 11 \ 0 \ 11)_2 = (00100 \ 0011011)_2$$

2'S complement \rightarrow 110111100101

Hexadecimal equivalent→ (DE5)_H

05. Ans: 5

Since 1995

Sol: Symbols used in this equation are 0,1,2,3 Hence base or radix can be 4 or higher

$$(312)_x = (20)_x (13.1)_x$$

$$3x^2 + 1x + 2x^0 = (2x+0)(x+3x^0+x^{-1})$$

$$3x^2+x+2 = (2x) \left(x+3+\frac{1}{x}\right)$$

$$3x^2 + x + 2 = 2x^2 + 6x + 2$$

$$x^2 - 5x = 0$$

$$x(x-5)=0$$

$$x = 0(or) x = 5$$

x must be
$$x > 3$$
, So $x = 5$

06. Ans: 3

Sol: $123_5 = x8_v$

$$1 \times 5^2 + 2 \times 5^1 + 3 \times 5^0 = x.y^1 + 8 \times y^0$$

$$25 + 10 + 3 = xy + 8$$

$$\therefore xy = 30$$

Possible solutions:

i.
$$x = 1, y = 30$$

ii.
$$x = 2, y = 15$$

iii.
$$x = 3$$
, $y = 10$

∴ 3 possible solutions exists.

07. Ans: 1

Sol: The range (or) distinct values

For 2's complement
$$\Rightarrow$$
 $-(2^{n-1})$ to $+(2^{n-1}-1)$

For sign magnitude

$$\Rightarrow$$
 -(2ⁿ⁻¹-1) to +(2ⁿ⁻¹-1)

Let $n = 2 \Rightarrow$ in 2's complement

$$-(2^{2-1})$$
 to $+(2^{2-1}-1)$

$$-2$$
 to $+1 \Rightarrow -2, -1, 0, +1 \Rightarrow X = 4$

n = 2 in sign magnitude $\Rightarrow -1$ to $+1 \Rightarrow Y = 3$

$$X - Y = 1$$

Chapter 2

Logic Gates & Boolean Algebra

01. Ans: (c)

Sol: Given 2's complement numbers of sign bits are x & y. z is the sign bit obtained by adding above two numbers. \therefore Overflow is indicated by $= \overline{x} \overline{y} z + x y \overline{z}$

Examples

1.
$$A = +7$$
 0111
 $B = +7$ 0111
14 1110 $\Rightarrow \overline{x} \overline{y} z$
2. $A = +7$ 0111
 $B = +5$ 0101
12 1100 $\Rightarrow \overline{x} \overline{y} z$
3. $A = -7$ 1001
 $B = -7$ 1001
 -14 10010 $\Rightarrow x y \overline{z}$
4. $A = -7$ 1011
 $B = -5$ 1011
 -12 10100 $\Rightarrow x y \overline{z}$

02. Ans: (b)

Sol: Truth table of XOR

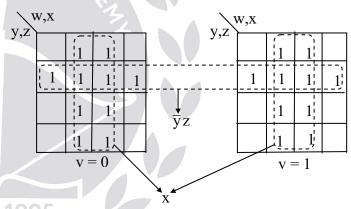
A	В	o/p
0	0	0
0	1	1
1	0	1
1	1	0

Stage 1:

Given one i/p = 1 Always.

For First XOR gate $o/p = \overline{X}$

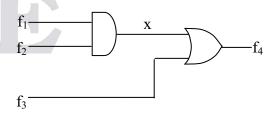
Stage 2:


For second XOR gate o/p = 1.

Similarly for third XOR gate $o/p = \overline{X}$ & for fourth o/p = 1

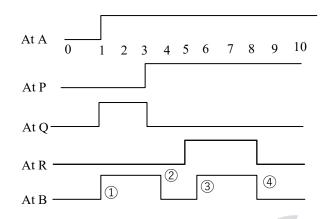
For Even number of XOR gates o/p = 1For 20 XOR gates cascaded o/p = 1.

03. Ans: (b)


Sol:

04. Ans: (c)

Sol:


Since

$$x = f_1 f_2$$

 $f_4 = f_1$. $f_2 + f_3$

05. Ans: (d)

Sol:
$$\overline{x_1} \oplus \overline{x_3} = \overline{x_1} x_3 + x_1 \overline{x_3} = y$$

 $\overline{x_2} \oplus \overline{x_4} = \overline{x_2} x_4 + x_2 \overline{x_4} = z$
 $(\overline{x_1} \oplus \overline{x_3}) \oplus (\overline{x_2} + \overline{x_4})$
 $= y \oplus z = 0$, when $y = z$

∴ option (c) is true

For all cases option A, B, D not satisfy.

07. Ans: (b)

Sol:
$$M(a,b,c) = ab + bc + ca$$

$$\overline{M(a,b,c)} = \overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c}$$

$$M(a,b,\overline{c}) = ab + b\overline{c} + \overline{c}a$$

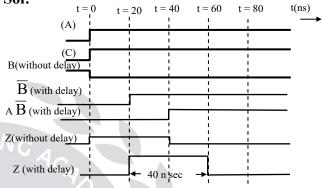
$$M(\overline{M(a,b,c)}, M(a,b,\overline{c}), c)$$

$$= (\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c})(ab + b\overline{c} + a\overline{c})$$

$$+ (ab + \overline{b}\overline{c} + \overline{c}a)c + (\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c})c$$

$$= (\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c})(ab + b\overline{c} + a\overline{c})$$

$$+ (\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c})(c) + abc$$


$$= a\overline{b}\overline{c} + \overline{a}b\overline{c} + abc + \overline{a}\overline{b}c$$
$$= \overline{c}[a\overline{b} + \overline{a}b] + c[ab + \overline{a}\overline{b}]$$

$$= \sum m(1,2,4,7)$$

$$\therefore M(x, y, z) = a \oplus b \oplus c$$
Where $x = \overline{M(a,b,c)}$, $y = M(a,b,\overline{c})$, $z = c$

08. Ans: 40

Sol:

∴ Z is 1 for 40 nsec

1995

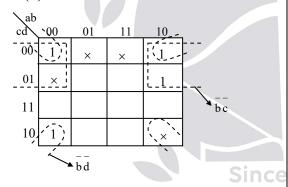
Sol: Logic gates
$$\overline{X} + Y = \overline{X}\overline{Y} = \overline{X}\overline{Y}_1$$

Where
$$Y_1 = \overline{Y}$$

It is a NAND gate and thus the gate is 'Universal gate'.

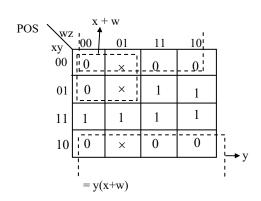
Chapter

K - Maps


01. Ans: (b)

Sol:

yz w	x ₀₀	0 1	11	10	
yz \ 0 0		1	1		
01	×			1	
11	×			1	
1 0		1	1	×	
	f -	- v 7 +	√ 2	6	


02. Ans: (b)

Sol:

$$f=\overline{b}\ \overline{d}+\overline{b}\ \overline{c}$$

03. Sol:

SOP	wz xy	00	01	11	10	
	00	0	×	0	0	
	01	0	×	[1	1 <u> </u>	►wy
	11	1	1	1	1	
	10	0	×	0	0	
		= xy	+yw	xy	,	•

SOP: x y + y w

POS: y(x + w)

04. Ans: (a)

Sol: For n-variable Boolean expression,

Maximum number of minterms = 2^n

Maximum number of implicants = 2^n

Maximum number of prime implicants = $\frac{2^n}{2}$

$$= 2^{n-1}$$

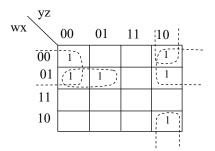
05. Ans: (c)

Sol:

AB	00_	01	11	10
0	(ĺ	j,	0	0
1	0	(1	Ĵ)	0

$$F(A, B, C) = \overline{AC} + BC$$

06. Ans: 1


Sol: After minimization = $(\overline{A} + \overline{B} + \overline{C} + \overline{D})$ = ABCD

: only one minterm.

:7: K-Maps

07. Ans: 3

Sol: $\overline{w} \, \overline{z} + \overline{w} \, x \overline{y} + \overline{x} \, y \overline{z}$

Combinational Circuits

01. Ans: (d)

Sol: Let the output of first MUX is "F₁"

$$F_1 = AI_0 + AI_1$$

Where A is selection line, I_0 , $I_1 = MUX$ Inputs

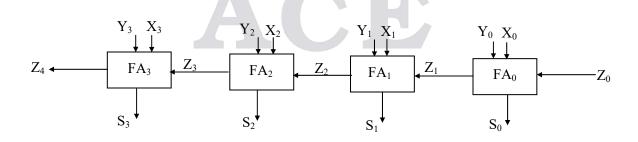
$$F_1 = \overline{S}_1.W + S_1.\overline{W} = S_1 \oplus W$$

Output of second MUX is

$$F = \overline{A}.I_0 + A.I_1$$

$$F = \overline{S}_2.F_1 + S_2.\overline{F}_1$$

$$F = S_2 \oplus F_1$$

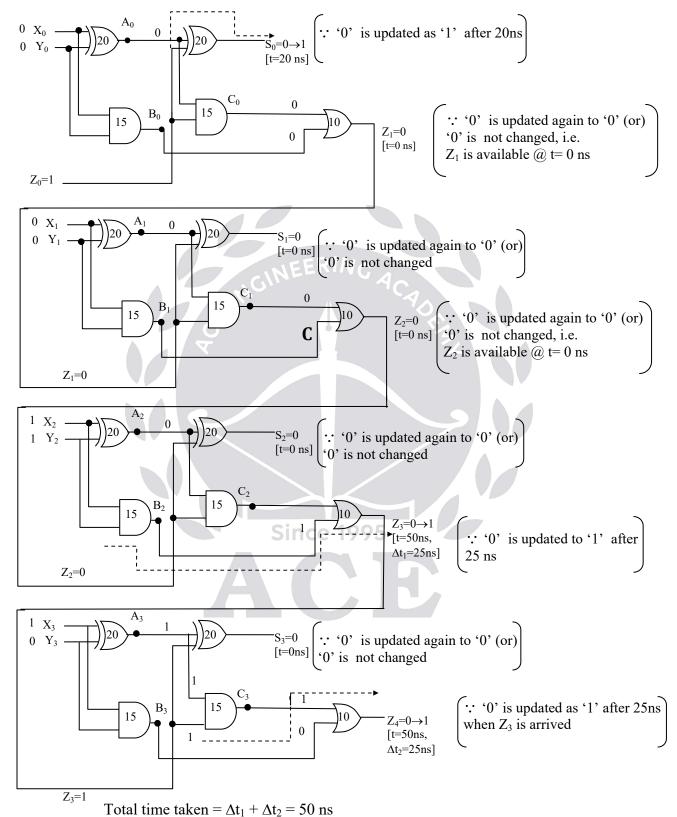

But
$$F_1 = S_1 \oplus W$$

$$F = S_2 \oplus S_1 \oplus W$$

i.e.,
$$F = W \oplus S_1 \oplus S_2$$

02. Ans: 50

Sol:



Since 1995

Initially all the output values are '0', at t = 0, the inputs to the 4-bit adder are changed to $X_3X_2X_1X_0 = 1100$, $Y_3Y_2Y_1Y_0 = 0100$

---- indicates critical path delay to get the output

ACE Engg. Publications Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Bengaluru | Lucknow | Patna | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata

i.e. critical time (or) maximum time is taken for Z₄ to get final output as '1'

03. Ans: (a)

Sol: The given circuit is binary parallel adder/subtractor circuit. It performs A+B, A-B but not A + 1 operations.

K	$\mathbf{C_0}$	Operation
0	0	A+B (addition)
0	1	A+B+1(addition with carry)
1	0	$A+\overline{B}$ (1's complement addition)
1	1	$A + \overline{B} + 1$ (2's complement subtraction)

04. Ans: (d)

Sol: It is expansion of 2:4 decoders to 1:8 demultiplexer A₁, A₀ must be connected to S₁, S₀ i.e., $R = S_0, S = S_1$

Since 1995

Q must be connected to S_2 i.e., $Q = S_2$

P is serial input must be connected to D_{in}

05. Ans: 6

Sol:
$$T = 0 \rightarrow NOR \rightarrow MUX 1 \rightarrow MUX 2$$

Delay =
$$2ns + 1.5ns + 1.5ns = 5ns$$

$$T = 1 \rightarrow NOT \rightarrow MUX 1 \rightarrow NOR \rightarrow MUX 2$$

1ns 1.5ns 2ns 1.5ns

Delay =
$$1 \cdot 1.5 \cdot 1.5$$

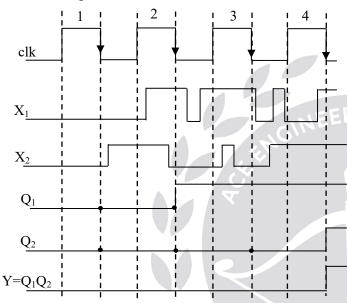
Hence, the maximum delay of the circuit is 6ns

06. Ans: -1

Sol: When all bits in 'B' register is '1', then only it gives highest delay.

∴ '-1' in 8 bit notation of 2's complement is 1111 1111

Sequential Circuits


Chapter

01. Ans: (c)

Sol: Given Clk, X_1 , X_2

Output of First D-FF is Q₁

Output of Second D-FF is Q2

02. Ans: 4

Sol: In the given first loop of states, zero has repeated 3 times. So, minimum 4 number of Flip-flops are needed.

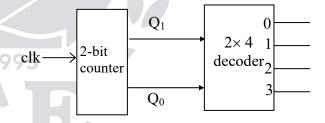
03. Ans: 7

Sol: The counter is cleared when $Q_DQ_CQ_BQ_A = 0110$

Clk	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
2 3 4 5 6	0	1	1	0
7	0	0	0	0

As the clear input is given to be synchronous so it waits upto the next clock pulse to clear the counter & hence the counter get's cleared during the 7th clock pulse.

 \therefore mod of counter = 7


04. Ans: (b)

Sol: The given circuit is a mod 4 ripple down counter. Q_1 is coming to 1 after the delay of $2\Delta t$.

CLK	\mathbf{Q}_1	\mathbf{Q}_0
	0	Ó
1	1	12
2	1	02
$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$	0	1.2
4	0	05

05. Ans: (c)

Sol: Assume n = 2

Outputs of counter is connected to inputs of decoder

Counter outputs		Decoder inputs		Decoder outputs			
Q_1	Q_0	a	b	d_3	d_2	d_1	d_0
0	0	0	0	0	0	0	1
0	1	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0

The overall circuit acts as 4-bit ring counter

 \therefore k = 2^2 = 4, k-bit ring counter

06. Ans: (b)

Sol:

CLK	Serial in=	ABCD
	$B \oplus C \oplus D$	
0		1 0 1 0
1	1	1 1 0 1
2	$0 \longrightarrow$	0 1 1 0
3	0	0 0 1 1
4	$0 \longrightarrow$	0 0 0 1
5	1	1 0 0 0
6	$0 \longrightarrow$	0 1 0 0
7	1	1 0 1 0

∴ After 7 clock pulses content of shift register become 1010 again

07. Ans: (b) Sol:

Ī	J	K	Q	$\overline{\overline{Q}}_n$	$T = (J + Q_n)$	Q_{n+1}
					$\left(K + \overline{Q}_{n}\right)$	
	0	0	0	1	0.1 = 0	0 ζ
	0	0	1	0	1.0 = 0	$1 \int Q_n$
	0	1	0	1	0.1 = 0	ר 0
	0	1	1	0	1.1 = 1	$0 \downarrow 0$
	1	0	0	1	1.1 = 1	1
	1	0	1	0	1.0 = 0	1 / 1
	1	1	0	1	1.1 = 1	1]
	1	1	1	0	1.1 = 1	$0^{\int \overline{Q}_n}$

J^{k}	^Q n 00	01	11	10	
0	700		$\langle \widehat{1} \rangle$		
1	1),7			(1)	-

$$T = J \overline{Q_n} + KQ_n = (J+Q_n) (K + \overline{Q_n})$$

08. Ans: 1.5 Sol:

C <i>l</i> k	Q_1 Q_2	Q ₃ Q ₄	Q ₅	$Y = Q_3 + Q_5$
0	0 1	01_	0	0
1	0 0	1 0	1	1
2	1 0	0_1_	510 CE	201995
3	0 1	0, 0,	1	1
4	1 0	1 0	0	1
5	0 1	0 1	0	0

The waveform at OR gate output, Y is [A = +5V]

Average power

$$P = \frac{V_{Ao}^{2}}{R} = \frac{1}{R} \left[\int_{T_{1} \to \infty}^{Lt} \frac{1}{T_{1}} \int_{o}^{T_{1}} y^{2}(t) dt \right] = \frac{1}{RT_{1}} \left[\int_{T}^{2T} A^{2} dt + \int_{3T}^{5T} A^{2} dt \right]$$
$$= \frac{A^{2}}{RT_{1}} \left[(2T - T) + (5T - 3T) \right] = \frac{A^{2} . 3T}{R(5T)} = \frac{5^{2} . 3}{10 \times 5} = 1.5 \text{ mw}$$

09. Ans: (b)

Sol:

Present	Next	State	Output (Y)		
State	X = 0	X = 1	X = 0	X = 1	
A	A	Е	0	0	
В	C	Α	1	0	
C	В	Α	1	0	
D	A	В	0	1	
Е	A	C	0	1	

Step (1):

By replacing state B as state C then state B, C are equal.

Reducing state table						
Present state	Next state					
	X = 0	X = 1				
A	Α	Е				
В	В	Α				
В	В	Α				
D	A	В				
Е	Α	В				
	GA					

Step (2):

Reducing state table					
Present state	Next s	tate			
	X = 0	X = 1			
A	A	Е			
В	В	A			
D	A	В			
E	A	В			

State D, E are equal, remove state E and replace E with D in next state.

Reducing state table				
Present state	Next st	tate		
	X = 0	X = 1		
A	A	D		
В	В	A		
D	A	В		
D	A	В		

Finally reduced state table is

Reduced state table					
Present state	Next st	tate			
4	X = 0	X = 1			
A	A	D			
В	В	A			
D	A	В			

:. 3 states are present in the reduced state table

10. Ans: (c)

Since 1995

Sol: State table for the given state diagram

State	Input	Output
S_0	0	1
S_0	1	0
S_1	0	1
S_1	1	0

Output is 1's complement of input.

Ans: (c) 11.

Sol: In state (C), when XYZ = 111, then Ambiguity occurs

Because, from state (C)

 \Rightarrow When X = 1, Z = 1

 \Rightarrow N.S is (A)

When Y = 1, $Z = 1 \Rightarrow N.S$ is (B)

Logic Gate Families

Chapter

01. Ans: (D)

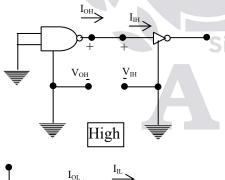
Sol: V_{OH}(min):-

(High level output voltage)

The minimum voltage level at a Logic circuit output in the logic '1' state under defined load conditions.

Vol(max):-

(Low level output voltage)


The maximum voltage level at a logic circuit output in the Logical '0' state under defined load conditions.

V_{IL}(max):- (Low level input voltage)

The maximum voltage level required for a logic '0' at an input. Any voltage above this level will not be accepted as a Low by the logic circuit.

$V_{IH}(min)$:- (High level Input voltage)

The minimum voltage level required for logic '1' at an input. Any voltage below this level will not be accepted as a HIGH by the Logic circuit.

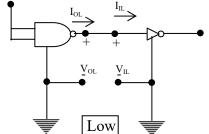


Fig: currents and voltages in the two logic

02. Ans: (b)

Sol: Fan out is minimum in DTL

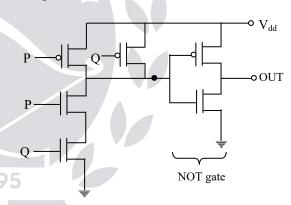
(High Fan-out = CMOS)

Power consumption is minimum in CMOS. Propagation delay is minimum in ECL (fastest = ECL)

03. Ans: (b)

Sol: When $V_i = 2.5V$,

 Q_1 is in reverse active region


Q₂ is in saturation region

Q₃ is in saturation region

Q₄ is in cut-off region

04. Ans: (d)

Sol: The given circuit can be redrawn as below:

$$OUT = (\overline{PQ}) = PQ$$
$$= P \text{ AND } Q$$

Ans: (b)

Sol: As per the description of the question, when the transistor Q_1 and diode both are OFF then only output z = 1.

X	Y	Z	Remarks
0	0	0	Q ₁ is OFF, Diode is ON
0	1	1	Q ₁ is OFF, Diode is OFF
1	0	0	Q ₁ is ON, Diode is OFF
1	1	0	Q ₁ is ON, Diode is OFF

Hence
$$Z = \overline{X}Y$$

7

A/D & D/A Converters

Chapter

01. Ans: (b)

Sol:

CLK	Counter			D	eco	der	•	V_0
	\mathbf{Q}_2	Q	$_{1}$ \mathbf{Q}_{0}	D	3 D	\mathbf{D}_1	\mathbf{D}_0	
1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	1	1
3	0	1	0	0	0	1	0	2
4	0	1	1	0	0	1	1	3
5	1	0	0	1	0	0	0	8
6	1	0	1	1	0	0	1	9
7	1	1	0	1	0	1	0	10
8	1	1	1	1	0	1	1	10
	1							11

02. Ans: (b)

Sol:

$$R_{\text{equ}} = (((((2R||2R)+R)||2R)+R)||2R)+R)||2R)$$

$$R_{equ} = R = 10 k\,\Omega$$
 .

$$I = \frac{V_R}{R} = \frac{10V}{10k} = 1mA.$$

Current division at $\frac{I}{16}$

$$=\frac{1\times10^{-3}}{16}=62.5\,\mu\,A$$

03. Ans: (c)

Sol: Net current at inverting terminal,

$$I_i = \frac{I}{4} + \frac{I}{16} = \frac{5I}{16}$$

$$V_0 = -I_i R = -\frac{5I}{16} \times 10k\Omega$$
$$= \frac{-5 \times 1 \times 10^{-3} \times 10 \times 10^3}{16} = -3.125V$$

04. Ans: (d)

Sol: Given that
$$V_{DAC} = \sum_{n=0}^{3} 2^{n-1} b_n$$
 Volts

$$V_{DAC} = 2^{-1}b_0 + 2^0b_1 + 2^1b_2 + 2^2b_3$$

$$\Rightarrow$$
 $V_{DAC} = 0.5b_0 + b_1 + 2b_2 + 4b_3$

Initially counter is in 0000 state

	Up	V _{DAC} (V)	o/p of
	counter o/p		comparator
(Rec.	b ₃ b ₂ b ₁ b ₀		
	0 0 0 0	0	1
	0 0 0 1	0.5	1
e de	0 0 1 0	1	1
	0 0 1 1	1.5	1
	0 1 0 0	2	1
	0 1 0 1	2.5	1
	0 1 1 0	3	1
q	0 1 1 1	3.5	1
	1 0 0 0	4	1
	1 0 0 1	4.5	1
4	1 0 1 0	5	1
	1 0 1 1	5.5	1
	1 1 0 0	6	1
	1 1 0 1	6.5	0

When $V_{DAC} = 6.5 \text{ V}$, the o/p of comparator is '0'. At this instant, the clock pulses to the counter are stopped and the counter remains in 1101 state.

∴ The stable reading of the LED display is 13.

05. Ans: (b)

Sol: The magnitude of error between $V_{DAC}\ \&\ V_{in}$ at steady state is $\left|V_{DAC} - V_{in}\right| = \left|6.5 - 6.2\right|$ = 0.3 V

06. Ans: (a)

Sol: In Dual slope

ADC
$$\Rightarrow V_{in}T_1 = V_R.T_2$$

$$\Rightarrow V_{in} = \frac{V_RT_2}{T_1}$$

$$= \frac{100 \text{ mV} \times 370.2 \text{ ms}}{300 \text{ ms}}$$

DVM indicates = 123.4

07. Ans: (d)

Sol: Ex:
$$f_{in} = 1 \text{ kHz} \rightarrow f_s = 2 \text{ kHz}$$

 $f_{in} = 25 \text{ kHz} \leftarrow f_s = 50 \text{ kHz}$

- 1. Max conversion time = $2^{N+1}T = 2^{11}.1 \mu s$ $= 2048 \mu s$
- 2. Sampling period = $T_s \ge maximum$ conversion time

$$T_s \geq 2048~\mu s$$

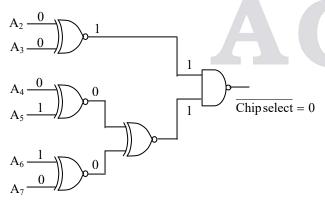
3. Sampling rate
$$f_s = \frac{1}{T_s} \le \frac{1}{2048 \times 10^{-6}}$$

$$f_s \le 488$$
 $f_s \le 500 \text{ Hz}$

4.
$$f_{in} = \frac{f_s}{2} = 250 \,\text{Hz}$$

Chapter 8

Architecture, Pin Details of 8085 & Interfacing with 8085


01. Ans: (a)

Sol: chip select is an active low signal for chipselect = 0; the inputs for NAND gate must be let us see all possible cases for chipselect = 0 condition

A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
0	0	0	0	0	0	X	X
0	0	1	1	0	0	X	X
0	1	0	1	0	0	X	X
0	1	1	0	0	0	X	$X \rightarrow 60 \text{H (A}_1 \text{A}_0 = 00)$
1	0	0	1	0	0	X	X
1	0	1	0	0	0	X	X
0	0	0	0	1	1	X	X
0	0	1	1	1	1	\mathbf{X}	X
0	1	0	1	0	0	X	X
0	1	1	0	0	0	X	$X \rightarrow 63H(A_1A_0=11)$
1	0	0	1	0	0	X	X
1	0	0	0	0	0	X	X

The only option that suits hare is option(a)

 A_0 & A_1 are used for line selection A_2 to A_7 are used for chip selection

 \therefore Address space is 60H to 63H A_o to A_{11} are used for line selection A_{12} to A_{15} are used for chip selection

A_{1}	5 A ₁₄	A ₁₃	A ₁₂	A ₁₁ A ₀	_
1	1	1	0	0 0	=E000H
1	1	1	0	11	=EFFFH

02. Ans: (d) Sol:

- Both the chips have active high chip select inputs.
- Chip 1 is selected when $A_8 = 1$, $A_9 = 0$ Chip 2 is selected when $A_8 = 0$, $A_9 = 1$
- Chips are not selected for combination of 00 & 11 of A₈ & A₉
- Upon observing A₈ & A₉ of given address Ranges, F800 to F9FF is not represented

03. Ans: (d)

Sol: The I/O device is interfaced using "Memory Mapped I/O" technique.

The address of the Input device is

 $A_{15} \ A_{14} \ A_{13} \ A_{12} \ A_{11} \ A_{10} \ A_{9} \ A_{8} \ A_{7} \ A_{6} \ A_{5} \ A_{4} \ A_{3} \ A_{2} \ A_{1} \ A_{0}$

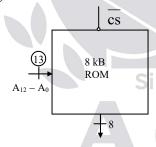
The Instruction for correct data transfer is = LDA F8F8H

04. Ans: (b) Sol:

• Out put 2 of 3×8 Decoder is used for selecting the output port. ∴ Select code is 010

• This mapping is memory mapped I/O

Since


05. Ans: (d)

Sol	:

A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A_{10}	$A_9 A_0$	
0	0	0	0	1	0	0 0	=0800H
		 				!	}
0	0	0	0	1	0	1 1	=0BFFH
0	0	0	1	1	0	0 0	=1800H
		1				!	:
0	0	0	1	1	0	1 1	=1BFFH
0	0	1	0	1	0	00	=2800H
		!					
0	0	1	0	1	0	11	=2BFFH
0	0	1	1	1	0	00	=3800H
		 				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
0	0	1	1	1	0	1₹1	=3BFFH

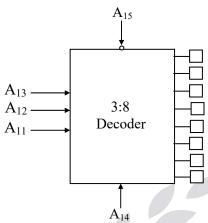
06. Ans: (a)

Sol: Address Range given is

	A_1	A_{14}	A_{13}	A_{12}	A_{11}	A_{10}	$A_9 A_8$	A	A ₆	\overline{A}_5	A_4	A_3	A_2	A_1	A_0
$1000H \rightarrow$	0	0	0	1	0	0	0 0	0	0	0	0	0	0	0	0
$2FFFH \rightarrow$	0	0	1	0	1	1	1 1	1	1	1	1	1	1	1	1

To provide \overline{cs} as low, The condition is

$$A_{15} = A_{14} = 0$$
 and $A_{13} A_{12} = 01$ (or) (10)


i.e $A_{15} = A_{14} = 0$ and A_{13} A_{12} shouldn't be 00, 11.

Thus it is
$$A_{15} + A_{14} + [A_{13}A_{12} + \overline{A_{13}}, \overline{A_{12}}]$$

07. Ans: (a)

Sol:

 A_{15} , A_{14} are used for chip selection

 A_{13} , A_{12} , A_{11} are used for input of decoder

A ₁₅ A ₁₄	A ₁₃ A ₁₂ A ₁₁	A ₁₀ A ₀
Enable of	Input of decoder	Address of
decoder		chip

Size of each memory block = $2^{11} = 2K$

Chapter

Instruction set of 8085 & **Programming with 8085**

01. **Ans: (c)**

Sol:

6010H : LXI H,8A79H ; (HL) = 8A79H

6013H : MOV A, L $(A)\leftarrow(L) = 79$

6014H : ADD H (A) = 0111 1001

(H) = 1000 1010

; (A) = 0000 0011

CY = 1, AC = 1

6015H: DAA

; 66 Added to (A) since CY=1 &

AC = 1

; (A) = 69H

6016H : MOV H,A ; (H)←(A) = 69H

6017H: PCHL $(PC)\leftarrow (HL) = 6979H$

02. Ans: (c)

Sol: 0100H : LXI SP, 00FFH ; (SP) = 00FFH

0103H : LXIH, 0107H ; (HL) = 0107H

0106H : MVI A, 20H ; (A) = 20H

 $0108H : SUB M ; (A) \leftarrow (A) - (0107)$

;(0107) = 20H

(A) = 00H

The contents of Accumulator is 00H

03. Ans: (c)

Sol: SUB1 : MVI A, 00H $A \leftarrow 00H$

CALL SUB2 → program will shifted to

SUB 2 address location

SUB 2 : INR A \rightarrow

01H

RET \rightarrow returned to the main program

:. The contents of Accumulator after execution of the above SUB2 is 02H

04. Ans: (c)

Sol: The loop will be executed until the value in register equals to zero, then,

Execution time

=9(7T+4T+4T+10T)+(7T+4T+4T+7T)+7T

= 254T

05. Ans: (d)

Sol: H=255 : L=255, 254, 253, ---0

H=254 : L=0, 255, 254, ----0

L = 0,255,254,253,---0H=1

H=0

In first iteration (with H=255), the value in L is decremented from 255 to 0 i.e., 255 times

In further remaining 254 iterations, the value in L is decremented from 0 to 0 i.e., 256 times

: 'DCRL' instruction gets executed for

 $\Rightarrow [255 + (254 \times 256)]$

 \Rightarrow 65279 times

06. Ans: (a)

Sol: "STA 1234H" is a 3-Byte Instruction and it requires 4 Machine cycles (Opcode fetch, Operand1 Read, Operand2 Read, Memory write). The Higher order Address $(A_{15} - A_8)$ sent in 4 machine cycles is as follows

Given "STA 1234" is stored at 1FFEH

i.e., Address Instruction

1FFE, 1FFF, 2000: STA 1234H

Machine cycle	Address (A ₁₅ -A ₀)	Higher order address (A ₁₅ -A ₈)				
1. Opcode fetch	1FFEH	1FH				
2. Operand1 Read	1FFFH	1FH				
3. Operand2 Read	2000Н	20H				
4. Memory Write	1234H	12H GINE				

i.e. Higher order Address sent on A₁₅-A₈ for

4 Machine Cycles are 1FH, 1FH, 20H, 12H.

07. Ans: (d)

Sol: The operation SBI BE_H indicates $A\text{-}BE \rightarrow A$ where A indicates accumulator Thus the result of the subtraction operation is stored in the accumulator and the contents of accumulator are changed.

08. Ans: (c)

Sol: If the content in register B is to be multiplied with the content in register C, the contents of register B is added to the accumulator (initial value of accumulator is 0) for C times.

