

ELECTRICAL ENGINEERING

Volume - I: Study Material with Classroom Practice Questions

Digital Electronics & Microprocessors

1. Number Systems

01. Ans: (d)

Sol:
$$135_x + 144_x = 323_x$$

$$(1 \times x^{2} + 3 \times x^{1} + 5 \times x^{0}) + (1 \times x^{2} + 4 \times x^{1} + 4 \times x^{0})$$

= $3x^{2} + 2x^{1} + 3x^{0}$

$$\Rightarrow x^2 + 3x + 5 + x^2 + 4x + 4 = 3x^2 + 2x + 3$$

$$x^2 - 5x - 6 = 0$$

(x-6)(x+1) = 0 (Base cannot be negative)

Hence x = 6.

(OR)

As per the given number x must be greater than 5. Let consider x = 6

$$(135)_6 = (59)_{10}$$

$$(144)_6 = (64)_{10}$$

$$(323)_6 = (123)_{10}$$

$$(59)_{10} + (64)_{10} = (123)_{10}$$

So that
$$x = 6$$

02. Ans: (a)

Sol: 8-bit representation of $+127_{10}$

$$= 01111111_{(2)}$$

1's complement representation of

$$-127 = 10000000$$
.

2's complement representation of

$$-127 = 10000001$$
.

No. of 1's in 2's complement of

$$-127 = m = 2$$

No. of 1's in 1's complement of

$$-127 = n = 1$$

$$\therefore$$
 m: n = 2:1

03. Ans: (c)

Sol: In 2's complement representation the sign bit can be extended towards left any number of times without changing the value. In given number the sign bit is 'X₃', hence it can be extended left any no. of times.

04. Ans: (c)

05. Ans: 5

Sol: Symbols used in this equation are 0,1,2,3 Hence base or radix can be 4 or higher

$$(312)_x = (20)_x (13.1)_x$$

$$3x^2 + 1x + 2x^0 = (2x+0)(x+3x^0+x^{-1})$$

$$3x^2+x+2 = (2x) \left(x+3+\frac{1}{x}\right)$$

$$3x^2 + x + 2 = 2x^2 + 6x + 2$$

$$x^2 - 5x = 0$$

$$x(x-5)=0$$

$$x = 0(or) x = 5$$

x must be
$$x > 3$$
, So $x = 5$

06. Ans: 3 possible solutions

Sol:
$$123_5 = x8_y$$

$$1 \times 5^2 + 2 \times 5^1 + 3 \times 5^0 = x.y^1 + 8 \times y^0$$

$$25 + 10 + 3 = xy + 8$$

$$\therefore xy = 30$$

Possible solutions:

i.
$$x = 1, y = 30$$

ii.
$$x = 2, y = 15$$

iii.
$$x = 3$$
, $y = 10$

3 possible solutions

07. Ans: (1)

Sol: The range (or) distinct values For 2's complement $\Rightarrow -(2^{n-1})$ to $+(2^{n-1}-1)$ For sign magnitude

$$\Rightarrow$$
 -(2ⁿ⁻¹-1) to +(2ⁿ⁻¹-1)

Let $n = 2 \Rightarrow$ in 2's complement $-(2^{2-1})$ to $+(2^{2-1}-1)$ -2 to $+1 \Rightarrow -2, -1, 0, +1 \Rightarrow x = 4$ n = 2 in sign magnitude $\Rightarrow -1$ to $+1 \Rightarrow y = 3$ x - y = 1

2. Logic Gates & Boolean Algebra

01. Ans: (c)

Sol: Given 2's complement numbers of sign bits are x & y. z is the sign bit obtained by adding above two numbers. \therefore Overflow is indicated by $= \overline{x} \overline{y} z + x y \overline{z}$

Examples

1.
$$A = +7$$
 0111
 $B = +7$ 0111
14 1110 $\Rightarrow \overline{x} \overline{y} z$
2. $A = +7$ 0111
 $B = +5$ 0101
12 1100 $\Rightarrow \overline{x} \overline{y} z$
3. $A = -7$ 1001
 $B = -7$ 1001
 -14 10010 $\Rightarrow x y \overline{z}$
4. $A = -7$ 0111
 $B = -5$ 0101
 -12 10100 $\Rightarrow x y \overline{z}$

02. Ans: (b)

Sol: Truth table of XOR

A	В	o/p
0	0	0
0	1	1
1	0	1
1	1	0

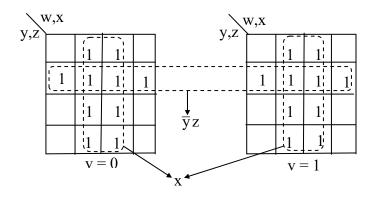
Stage 1:

Given one i/p = 1 Always.

For First XOR gate $o/p = \overline{X}$

Stage 2:

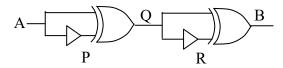
For second XOR gate o/p = 1.

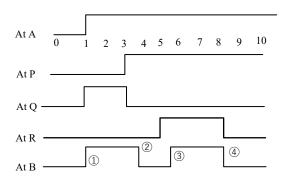

Similarly for third XOR gate $o/p = \overline{X}$ & for fourth o/p = 1

For Even number of XOR gates o/p = 1For 20 XOR gates cascaded o/p = 1.

03. Ans: (b)

Sol:




04. Ans: (c)

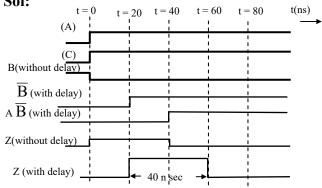
Sol: $f = f_1 f_2 + f_3$

05. Ans: (d)

Sol:

06. Ans: (c)

Sol: For all cases option A, B, D not satisfy.


07. Ans: (b)

Sol:
$$M(a,b,c) = ab + bc + ca$$

 $\overline{M(a,b,c)} = \overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\overline{c}$
 $M(a,b,\overline{c}) = ab + b\overline{c} + \overline{c}a$

$$\begin{split} M(\,\overline{M(a,b,c)}\,,\,M(a,b,\overline{c}\,\,),\,c) \\ &= \left(\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\,\overline{c}\right)\!(ab + b\overline{c} + a\overline{c}) \\ &\quad + (ab + \overline{b}\overline{c} + \overline{c}a)c + \left(\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\,\overline{c}\right)\!c \\ \\ &= \left(\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\,\overline{c}\right)\!(ab + b\overline{c} + a\overline{c}) \\ &\quad + \left(\overline{b}\overline{c} + \overline{a}\overline{b} + \overline{a}\,\overline{c}\right)\!(c) + abc \\ \\ &= a\overline{b}\overline{c} + \overline{a}b\overline{c} + abc + \overline{a}\overline{b}c \\ \\ &= \overline{c}[a\overline{b} + \overline{a}b] + c[ab + \overline{a}\overline{b}] \\ \\ &= \sum m(1,2,4,7) \\ \therefore M(x,y,z) = a \oplus b \oplus c \\ \\ \text{Where,} \quad x = \overline{M(a,b,c)}, \\ y = M(a,b,\overline{c}\,), z = c \end{split}$$

08. Ans: 40

Sol:

∴ Z is 1 for 40 nsec

09. Ans: (c)

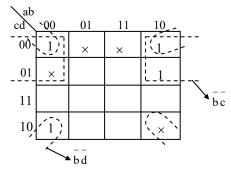
Sol: Logic gates $\overline{X} + Y = \overline{X}\overline{Y} = \overline{X}\overline{Y}_1$

Where $Y_1 = \overline{Y}$

It is a NAND gate and thus the gate is 'Universal gate'.

3. K-Maps

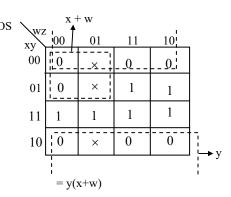
01. Ans: (b)

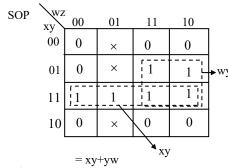

Sol:

vz	x ₀₀	0 1	1 1	10	
yz \ 0 0		1	1		
01	×			1	
1_1_	×			1	
10		1	1	×	-
					!

$$f = \overline{x}z + x\overline{z}$$

02. Ans: (b)

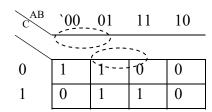

Sol:



$$f = \overline{b} \ \overline{d} + \overline{b} \ \overline{c}$$

03.

Sol:


SOP: x y + y w

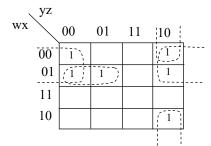
POS: y(x + w)

04. Ans: (a)

05. Ans: (c)

Sol:

$$F(A, B, C) = \overline{AC} + BC$$


06. Ans: 1

Sol: After minimization = $(\overline{\overline{A} + \overline{B} + \overline{C} + \overline{D}})$ = ABCD

: only one minterm.

07. Ans: 3

Sol: $\overline{w} \, \overline{z} + \overline{w} \, x \overline{y} + \overline{x} \, y \overline{z}$

4. Combinational Circuits

01. Ans: (d)

Sol: Let the output of first MUX is "F₁"

$$F_1 = AI_0 + AI_1$$

Where A is selection line, I_0 , $I_1 = MUX$ Inputs

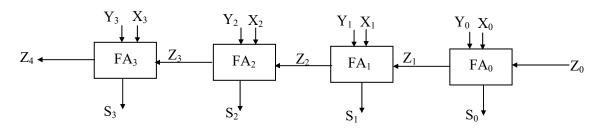
$$F_1 = \overline{S}_1.W + S_1.\overline{W} = S_1 \oplus W$$

Output of second MUX is

$$F = \overline{A}.I_0 + A.I_1$$

$$F = \overline{S}_2.F_1 + S_2.\overline{F}_1$$

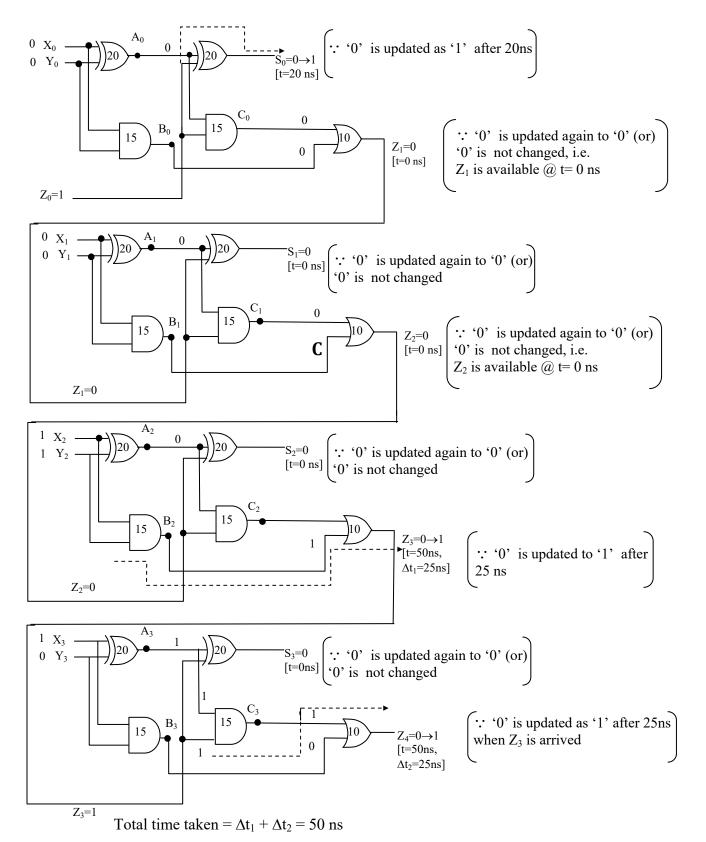
$$F = S_2 \oplus F_1$$


But
$$F_1 = S_1 \oplus W$$

$$F = S_2 \oplus S_1 \oplus W$$

i.e.,
$$F = W \oplus S_1 \oplus S_2$$

02. Ans: 50


Sol:

Initially all the output values are '0', at t=0, the inputs to the 4-bit adder are changed to $X_3X_2X_1X_0=1100,\,Y_3Y_2Y_1Y_0=0100$

---- indicates critical path delay to get the output

i.e. critical time (or) maximum time is taken for Z₄ to get final output as '1'

03. Ans: (a)

Sol: The given circuit is binary parallel adder/subtractor circuit. It performs A+B, A-B but not A + 1 operations.

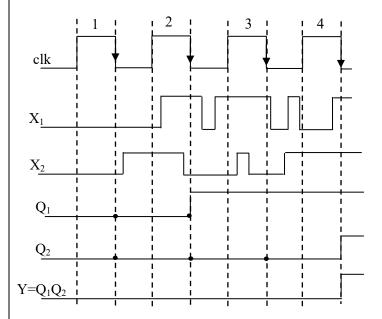
K	C_0	Operation
0	0	A+B (addition)
0	1	A+B+1(addition with carry)
1	0	$A+\overline{B}$ (1's complement addition)
1	1	$A+\overline{B}+1$ (2's complement subtraction)

04. Ans: (d)

Sol: It is expansion of 2:4 decoders to 1:8 demultiplexer A_1 , A_0 must be connected to S_1 , S_0 i.e.., $R = S_0$, $S = S_1$ Q must be connected to S_2 i.e., $Q = S_2$ P is serial input must be connected to D_{in}

05. Ans: 6

06. Ans: -1


is 1111 1111

Sol: When all bits in 'B' register is '1', then only it gives highest delay.∴ '-1' in 8 bit notation of 2's complement

5. Sequential Circuits

01. Ans: (c)

Sol: Given Clk, X₁, X₂
Output of First D–FF is Q₁
Output of Second D–FF is Q₂

02. Ans: 4

Sol: In the given first loop of states, zero has repeated 3 times. So, minimum 4 number of Flip-flops are needed.

03. Ans: 7

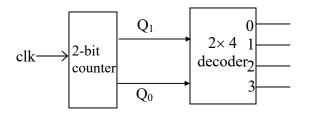
Sol: The counter is cleared when $Q_DQ_CQ_BQ_A = 0110$

Clk	QD	Qc	Q _B	Q _A
0	0	0	0	0

1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	0	0	0

As the clear input is given to be synchronous so it waits upto the next clock pulse to clear the counter & hence the counter get's cleared during the 7th clock pulse.

 \therefore mod of counter = 7


04. Ans: (b)

Sol: The given circuit is a mod 4 ripple down counter. Q_1 is coming to 1 after the delay of $2\Delta t$.

CLK	$\mathbf{Q}_1 \mathbf{Q}_0$		
	0	0	
1	1	12	
2	1	90	
3	0	12	
4	0	0	

05. Ans: (c)

Sol: Assume n = 2

Outputs of counter is connected to inputs of decoder

Coun	Counter outputs		Decoder inputs		Decoder outputs		
Q_1	Q_0	a	b	d_3	$d_2 \\$	$d_1 \\$	d_0
0	0	0	0	0	0	0	1
0	1	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	1	1	1	1	0	0	0

The overall circuit acts as 4-bit ring counter n = 2

 \therefore k = 2^2 = 4, k-bit ring counter

06. Ans: (b)

Sol:

CLK	Serial in=	A B C D
	$B \oplus C \oplus D$	
0		1 0 1 0
1	1→	1 1 0 1
2	$0 \rightarrow$	0 1 1 0
3	$0 \rightarrow$	0 0 1 1
4	$0 \rightarrow$	0 0 0 1
5	1→	1 0 0 0
6	0→	0 1 0 0
7	1→	1 0 1 0
	1 /	

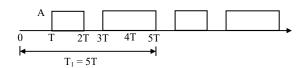
07. Ans: (b)

Sol:

J	K	Q	\overline{Q}_n	$T = (J + Q_n)$	Q_{n+1}
				$\left(K + \overline{Q}_n\right)$	
0	0	0	1	0.1 = 0	0 }
0	0	1	0	1.0 = 0	$1^{-J} Q_n$
0	1	0	1	0.1 = 0	0 }
0	1	1	0	1.1 = 1	$0 \downarrow 0$
1	0	0	1	1.1 = 1	1 }

1	0	1	0	1.0 = 0	1 1
1	1	0	1	1.1 = 1	1}
1	1	1	0	1.1 = 1	$0^{\prime} \overline{Q}_{n}$

J^{KQ_n} 00	01	11	10
0		/î\	
		, 1	
1 1)		$1/\sqrt{1}$	


$$T = J \ \overline{Q_n} \ + KQ_n = (J + Q_n) \ (K + \overline{Q_n} \)$$

08. Ans: 1.5

Sol:

C <i>l</i> k	Q_1	Q_2	Q ₃	Q ₄	Q ₅	$Y = Q_3 + Q_5$
0	Q,	1.	0	1	0	0
1	Q.	Q.	1	0	1	1
2	1	Q .	Q *	1	0	0
3	0	1	Q.	Q.	1	1
4	1	Q	Į	Q.	0	1
5	0	1	0	1	0	0

The waveform at OR gate output, Y is [A = +5V]

Average power

$$\begin{split} P &= \frac{V_{Ao}^2}{R} = \frac{1}{R} \Bigg[\frac{_{Lt}}{_{T_1 \to \infty}} \frac{1}{T_1} \int_{o}^{T_1} y^2(t) \, dt \Bigg] \\ &= \frac{1}{RT_1} \Bigg[\int_{T}^{2T} A^2 dt + \int_{3T}^{5T} A^2 dt \Bigg] \end{split}$$

$$= \frac{A^2}{RT_1} [(2T - T) + (5T - 3T)]$$
$$= \frac{A^2 . 3T}{R(5T)} = \frac{5^2 . 3}{10 \times 5} = 1.5 \text{ mw}$$

09. Ans: (b)

Sol:

Present	Next	State	Outpi	ut (Y)		
State	X = 0	X = 1	X = 0	X = 1		
A	A	Е	0	0		
В	C	A	1	0		
C	В	A	1	0		
D	A	В	0	1		
E	A	C	0	1		

Step (1):

By replacing state B as state C then state B, C are equal.

Reducing state table							
Present state	ent state Next state						
	X = 0	X = 1					
A	A	Е					
В	В	A					
В	В	A					
D	A	В					
Е	A	В					

Step (2):

Reducing state table

Present state	Next state					
	X = 0	X = 1				
A	A	Е				
В	В	A				
D	A	В				
Е	A	В				

State D, E are equal, remove state E and replace E with D in next state.

Reducing state table								
Present state Next state								
	X = 0	X = 1						
A	A	D						
В	В	A						
D	A	В						
D	A	В						

Finally reduced state table is

Reduced state table							
Present state Next state							
	X = 0	X = 1					
A	A	D					
В	В	A					
D	A	В					

∴ 3 states are present in the reduced state table

10. Ans: (c)

Sol: State table for the given state diagram

State	Input	Output
S_0	0	1
S_0	1	0
S_1	0	1
S_1	1	0

Output is 1's complement of input.

11. Ans: (c)

Sol: In state (C), when XYZ = 111, then Ambiguity occurs

Because, from state (C)

$$\Rightarrow$$
 When X = 1, Z = 1

$$\Rightarrow$$
 N.S is (A)

When
$$Y = 1$$
, $Z = 1 \Rightarrow N.S$ is (B)

6. A/D & D/A Converters

01. Ans: (b)

Sol:

CLK	Co	Counter		D	V_0			
	\mathbf{Q}_2	Q	1 Q 0	D;	3 D	2 D	\mathbf{D}_0	
1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	1	1
3	0	1	0	0	0	1	0	2
4	0	1	1	0	0	1	1	3
5	1	0	0	1	0	0	0	8
6	1	0	1	1	0	0	1	9
7	1	1	0	1	0	1	0	10
8	1	1	1	1	0	1	1	11

02. Ans: (b)

Sol:

$$\begin{split} R_{equ} &= (((((2R\|2R) + R)\|2R) + R)\|2R) + R)\|2R) \\ R_{equ} &= R = 10k\,\Omega \;. \\ I &= \frac{V_R}{R} = \frac{10V}{10k} = 1 mA . \end{split}$$

Current division at $\frac{I}{16}$

$$=\frac{1\times10^{-3}}{16}=62.5\,\mu\text{A}$$

03. Ans: (c)

Sol: Net current at inverting terminal,

$$I_{i} = \frac{I}{4} + \frac{I}{16} = \frac{5I}{16}$$

$$V_{0} = -I_{i} R = -\frac{5I}{16} \times 10k\Omega$$

$$= \frac{-5 \times 1 \times 10^{-3} \times 10 \times 10^{3}}{16} = -3.125V$$

04. Ans: (d)

Sol: Given that $V_{DAC} = \sum_{n=0}^{3} 2^{n-1}b_n$ Volts $V_{DAC} = 2^{-1}b_0 + 2^0b_1 + 2^1b_2 + 2^2b_3$ $\Rightarrow V_{DAC} = 0.5b_0 + b_1 + 2b_2 + 4b_3$

Initially counter is in 0000 state

Up	V _{DAC} (V)	o/p of
counter o/p		comparator
b ₃ b ₂ b ₁ b ₀		
0 0 0 0	0	1
0 0 0 1	0.5	1
0 0 1 0	1	1
0 0 1 1	1.5	1
0 1 0 0	2	1
0 1 0 1	2.5	1
0 1 1 0	3	1
0 1 1 1	3.5	1
1 0 0 0	4	1
1 0 0 1	4.5	1
1 0 1 0	5	1
1 0 1 1	5.5	1
1 1 0 0	6	1
1 1 0 1	6.5	0

When $V_{DAC} = 6.5 \text{ V}$, the o/p of comparator is '0'. At this instant, the clock pulses to the counter are stopped and the counter remains in 1101 state.

 \therefore The stable reading of the LED display is 13.

05. Ans: (b)

Sol: The magnitude of error between V_{DAC} & V_{in} at steady state is $\left|V_{DAC} - V_{in}\right| = \left|6.5 - 6.2\right|$ = 0.3 V

06. Ans: (a)

Sol: In Dual slope

$$\begin{split} ADC & \Rightarrow V_{in}T_1 = V_R.T_2 \\ & \Rightarrow V_{in} = \frac{V_RT_2}{T_1} \\ & = \frac{100\,\text{mV} \times 370.2\,\text{ms}}{300\,\text{ms}} \end{split}$$

DVM indicates = 123.4

07. Ans: (d)

Sol: Ex:
$$f_{in} = 1 \text{ kHz} \rightarrow f_s = 2 \text{ kHz}$$

 $f_{in} = 25 \text{ kHz} \leftarrow f_s = 50 \text{ kHz}$

- 1. Max conversion time = $2^{N+1}T = 2^{11}.1 \mu s$ = 2048 μs
- 2. Sampling period = $T_s \ge \text{maximum}$ conversion time

$$T_s \ge 2048 \ \mu s$$

3. Sampling rate
$$f_s = \frac{1}{T_s} \le \frac{1}{2048 \times 10^{-6}}$$

$$f_s \le 488$$
 $f_s \le 500 \text{ Hz}$

4.
$$f_{in} = \frac{f_s}{2} = 250 \,\text{Hz}$$

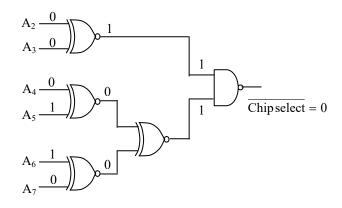
08. Ans: (d)

Sol: In an ADC along with S-H circuit (sample and hold) circuit, to avoid error at output, voltage across capacitor should not drop by more than $\pm \Delta/2$, where Δ is step size.

Here,
$$\Delta = \frac{10-0}{(2^{10}-1)} = 9.775 \times 10^{-3} \text{ V}$$

Hence
$$\frac{\Delta}{2} = 4.8875 \times 10^{-3} \text{ V}$$

So conversion time (maximum) should be such that the drop across capacitor voltage must reach maximum value $\Delta/2$.


Hence, time taken for this

$$t = \frac{\Delta/2}{\text{drop rate}} = \frac{4.8875 \times 10^{-3}}{10^{-4} \text{ V/m sec}}$$

 $t \cong 49 \text{ m sec}$

7. Architecture & Pin Details of 8085 & Interfacing with 8085

01. Ans: (a)

Sol: A_0 & A_1 are used for line selection A_2 to A_7 are used for chip selection

 \therefore Address space is 60H to 63H A_o to A_{11} are used for line selection A_{12} to A_{15} are used for chip selection

A ₁₅	A ₁₄	A_{13}	A_{12}	A_{11} A_0	
1	1	1	0	0 0	=E000H
1	1	1	0	11	=EFFFH

02. Ans: (d)

Sol: • Both the chips have active high chip select inputs.

- Chip 1 is selected when $A_8 = 1$, $A_9 = 0$ Chip 2 is selected when $A_8 = 0$, $A_9 = 1$
- Chips are not selected for combination of 00 & 11 of A₈ & A₉
- Upon observing A₈ & A₉ of given address Ranges, F800 to F9FF is not represented

03. Ans: (d)

Sol: The I/O device is interfaced using "Memory Mapped I/O" technique.

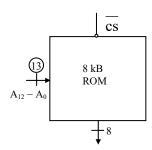
The address of the Input device is

The Instruction for correct data transfer is = LDA F8F8H

04. Ans: (b)

Sol: • Out put 2 of 3×8 Decoder is used for selecting the output port. : Select code is 010

This mapping is memory mapped I/o


05. Ans: (d)

Sol:

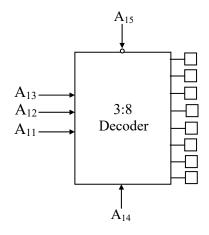
•								
•	A ₁₅	A ₁₄	A_{13}	A_{12}	A ₁₁	A_{10}	A_9 A_0	
	0	0	0	0	1	0	0 0	=0800H
	0	0	0	0	1	0	1 1	=0BFFH
	0	0	0	1	1	0	0 0	=1800H
								i
	0	0	0	1	1	0	1 1	=1BFFH
	0	0	1	0	1	0	0 0	=2800H
			!					! ! !
	0	0	1	0	1	0	1 1	=2BFFH
	0	0	1	1	1	0	0 0	=3800H
			ļ					-
	0	0	1	1	1	0	1 1	=3BFFH

06. Ans: (a)

Sol: Address Range given is

	A_{15}	A_{14}	A_{13}	A_{12}	A_{11}	A_{10}	$A_9 A_8$	8	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0
$1000H \rightarrow $	0	0	0	1	0	0	0 0		0	0	0	0	0	0	0	0
$2FFFH \rightarrow$	0	0	1	0	1	1	1 1		1	1	1	1	1	1	1	1

To provide \overline{cs} as low, The condition is


$$A_{15} = A_{14} = 0$$
 and $A_{13} A_{12} = 01$ (or) (10)

i.e
$$A_{15} = A_{14} = 0$$
 and A_{13} A_{12} shouldn't be 00, 11.

Thus it is
$$A_{15} + A_{14} + [A_{13}A_{12} + \overline{A_{13}}, \overline{A_{12}}]$$

07. Ans: (a)

Sol:

A₁₅, A₁₄ are used for chip selection

 A_{13} , A_{12} , A_{11} are used for input of decoder

A ₁₅ A ₁₄	A_{13} A_{12} A_{11}	A_{10} A_{0}		
Enable of	Input of decoder	Address of		
decoder		chip		

Size of each memory block = $2^{11} = 2K$

8. Instruction set of 8085 & Programming with 8085

01. Ans: (c)

Sol: 6010H : LXI H,8A79H ; (HL) = 8A79H

6013H : MOV A, L ; (A)←(L) = 79

6014H : ADD H ; (A) = 0111 1001

+

; (H) = 1000 1010

; (A) = 0000 0011

CY = 1, AC = 1

6015H: DAA ; 66 Added to (A)

since CY=1 &

AC = 1

; (A) = 69H

6016H : MOV H,A ; (H)←(A) = 69H

6017H : PCHL ; (PC)←(HL) = 6979H

02. Ans: (c)

Sol: 0100H : LXI SP, 00FFH ; (SP) = 00FFH

0103H : LXI H, 0107 H ; (HL) = 0107H

0106H : MVI A, 20H ; (A) = 20H

 $0108H : SUB M ; (A) \leftarrow (A) - (0107)$

;(0107) = 20H

; (A) = 00H

The contents of Accumulator is 00H

03. Ans: (c)

Sol: SUB1: MVI A, 00H A← 00H

CALL SUB2 → program will shifted to

SUB 2 address location

SUB 2 : INR A \rightarrow 01H

RET → returned to the main program
∴ The contents of Accumulator after execution of the above SUB2 is 02H

04. Ans: (c)

Sol: The loop will be executed until the value in register equals to zero, then,

Execution time

05. Ans: (d)

Sol: H=255 : L=255, 254, 253, ---0

H=254 : L=0, 255, 254, ----0

H=1 : L = 0,255,254,253,---0

H=0 : —

- → In first iteration (with H=255), the value in L is decremented from 255 to 0 i.e., 255 times
- → In further remaining 254 iterations, the value in L is decremented from 0 to 0 i.e., 256 times

.: 'DCRL' instruction gets executed for

 \Rightarrow [255 + (254 × 256)]

 \Rightarrow 65279 times

06. Ans: (a)

Sol: "STA 1234H" is a 3-Byte Instruction and it requires 4 Machine cycles (Opcode fetch, Operand1 Read, Operand2 Read, Memory write). The Higher order Address (A₁₅ - A₈) sent in 4 machine cycles is as follows Given "STA 1234" is stored at 1FFEH

i.e., Address Instruction

1FFE, 1FFF, 2000 : STA 1234H

Machine	Address	Higher order
cycle	$(A_{15}-A_0)$	address
		$(A_{15}-A_{8})$
1. Opcode	1FFEH	1FH
fetch		
2. Operand1	1FFFH	1FH
Read		
3. Operand2	2000H	20H
Read		
4. Memory	1234H	12H
Write		

i.e. Higher order Address sent on A_{15} – A_{8} for 4 Machine Cycles are 1FH,1FH,20H, 12H.

07. Ans: (d)

Sol: The operation SBI BE_H indicates $A - BE \rightarrow A$ where A indicates accumulator

Thus the result of the subtraction operation is stored in the accumulator and the contents of accumulator are changed.

08. Ans: (c)

Sol: If the content in register B is to be multiplied with the content in register C, the contents of register B is added to the accumulator (initial value of accumulator is 0) for C times.