DATA STRUCTURES

Volume-1: Study Material with Classroom Practice Questions
1. Arrays

01. Ans: 1010
 Sol: Loc. of A (I) = L0 + (i-lb) * C
 Loc of A [0] = 1000+(0+5) = 1010

02. Ans: 1024 and 1024
 Sol: (i) By RMO, the loc. of
 \[A[i, j] = L0 + ([i-b_1] (u_2-b_2+1) + (j-b_2)] * C \]
 \[A [0, 5] = 1000 + [(0+2) \times 5 + (5-3)] \times 2 \]
 \[= 1000+24 = 1024 \]
 (ii) By CMO, the loc of
 \[A[i, j] = L0 + [(j-b_2) (u_1-b_1+1) + (i-b_1)] * C \]
 \[A [0, 5] = 1000 + [(5–3) \times 5 + (0+2)] \times 2 \]
 \[= 1024 \]

03. Ans: (a)
 Sol: In general
 \[\text{RMO} = L_0 + (i - 1) r_2 + (j - 1) \]
 \[= 100 + (i - 1) 15 + (j - 1) \]
 \[= 100 + 15 i - 15 + j - 1 \]
 \[= 15 i + j + 84 \]

04. Ans: (c)
 Sol: Lower triangular matrix
 \[
 \begin{pmatrix}
 a & 0 & 0 & \cdots & 0 \\
 b & c & 0 & \cdots & 0 \\
 d & e & f & 0 & 0 \\
 g & h & i & j & 0 \\
 \end{pmatrix}
 \]
 \[\text{RMO} = L_0 + \text{the number of elements in} \]
 \[(i - 1) \text{ rows + one dimensional elements} \]
 \[= L_0 + (1 + 2 + \ldots + i - 1) + (j - 1) \]
 \[= L_0 + i \frac{(i-1)}{2} + (j - 1) \]

05. Ans: (c)
 Sol: CMO:
 Storage:
 \[
 \begin{array}{cccc|ccc|cccc}
 a_{11} & a_{21} & a_{31} & a_{41} & a_{22} & a_{32} & a_{42} & a_{33} & a_{43} & a_{44} \\
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 \end{array}
 \]
 Retrieval:
 \[\text{loc of } A[i, j] = L_0 + 2D + 1D \]
 \[= L_0 + [(j - 1) \text{ cols} + (i - lb)] \]
 In each col., \(i/b = j \).
 Loc. of \(A[i, j] = L_0 + [(j - 1) \text{ cols} + (i - j)] \)
 In \((j - 1) \text{ cols} \)
 The no. of elements is
 \[n + (n - 1) + \ldots + (n - (j - 1)) \]
 \[= (j - 1) n - [1 + 2 + \ldots + j - 2] \]
 \[= n(j-1) - \frac{(j-1)(j-2)}{2} \]
 \[\text{loc. of } A[i, j] \]
 \[= L_0 + \left[n(j-1) - \frac{(j-1)(j-2)}{2} + (i - j)\right] \]

06. Ans: (d)
 Sol: RMO:
 Storage:
 \[
 \begin{array}{cccc|ccc|cccc}
 a_{11} & a_{12} & a_{21} & a_{22} & a_{23} & a_{32} & a_{33} & a_{34} & a_{43} & a_{44} \\
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 \end{array}
 \]
Retrieval:
loc of \(A[i, j] = L_0 + 2D + 1D \)

\[= L_0 + \text{number of elements in } (i-1) \text{ rows} + (j-j/b) \]

Row \(j/b \)

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

except 1st row

\(i^{th} \) row \((i-1)\)th

loc of \(A[i, j] = L_0 + [(3i-4) + j - (i-1)] \)

\[= L_0 + (2i + j - 3) \]

07. Ans: (a)

Sol: CMO:

Storage:
\[
\begin{array}{cccccc}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
 0 & 1 & 2 & 3 & 4 & 5 \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
 1 & 6 & 7 & 8 & 9 & 0 \\
\end{array}
\]

Retrieval:
loc of \(A[i, j] = L_0 + 2D + 1D \)

\[= L_0 + (j-1)\text{cols} + (i-i/b) \]

Since \(i \) is Varying

Col \(i/b \)

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

except 1st column

\(j^{th} \) row \((j-1)\)th

\[\therefore \text{loc of } A[i, j] = L_0 + [3(j-1) - 1 + i - (j-1)] \]

\[= L_0 + [2j + i - 3] \]

08. Ans: (b)

Sol: Storage & Retrieval:

\[
\begin{array}{cccccc}
 a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \\
 a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
 a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\
 0 & 1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

0 1 2 3 4 5 6 7 8 9

If \(i - j = 1 \)

loc of \(A[i, j] = L_0 + 0 + (i-i/b) \)

or

\((j-j/b) \)

i.e.,

loc of \(A[i, j] = L_0 + 0 + (i-2) \)

or

\((j-1) \)

If \(i - j = 0 \)

loc of \(A[i, j] = L_0 + (n-1) \)

or

\((j-1) \)

If \(i - j = -1 \) // upper diagonal

loc of \(A[i, j] = L_0 + 2n - 1 \)

or

\((j-2) \)

09. Ans: (a)

Sol: A sample \(5 \times 5 \) S-matrix is given below.

\[
\begin{array}{cccccc}
 1 & 8 & 3 & 2 & 1 \\
 3 & 0 & 0 & 0 & 0 \\
 6 & 1 & 7 & 4 & 3 \\
 0 & 0 & 0 & 0 & 1 \\
 9 & 6 & 5 & 4 & 1 \\
\end{array}
\]

The compact representation is

\[[1, 8, 3, 2, 1, \ 6, 1, 7, 4, 3, \ 9, 6, 5, 4, 1, \ 3, 1]. \]
10. Ans: 9
Sol: \[2n - 1 = 10 - 1 = 9\]

\[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 1 & 2 & 3 \\
6 & 5 & 1 & 2 \\
7 & 6 & 5 & 1 \\
\end{array}\]

11. Ans: 190900
Sol: \[n + (a - 1) (2n - a)\]
\[1000 + (101 - 1) (2.1000 - 101)\]
\[1000 + 100 \times (2000 - 101)\]
\[1000 + 100 \times 1899\]
\[1000 + 189900 = 190900\]

12. Ans: (a)
Sol: Square Band Matrix:
It is denoted by \(D_{n,a}\) where \(n\) is size of matrix \(a\) is \((a-1)\)'s diagonals exists above and below the matrix diagonal.

\[D_{5,4} = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \\
\end{bmatrix}_{5 \times 5}\]

Size: \(N\) (diagonal elements)
\[= 2[N-1+N-2+N-3+...+N-(a-1)]\]
\[= N+2[(a-1)N-(1+2+3+...+a-1)]\]

Total no. of elements
\[= n+2 [n-1 + n-2 + + n- (a-1)]\]
\[= n + 2 [(a-1) n - \frac{a(a-1)}{2}]\]
\[= n+2n(a-1) - a (a-1) = n + (a-1) [2n-a]\]

(b) \(D_{6,4}\)
In \(D_{6,4}\) \(\rightarrow\) \(A\) \((5,4)\) in \(3\)rd diagonal
\(A\) \((5,4)\) in \(4\)th diagonal

(i) \(i - j\) value is remained constant throughout the diagonal
(ii) As ‘\(a\)’ value changes, accordingly \(K\) value also changes.
\[\therefore K = a - (i - j)\]
\[\therefore \text{loc. of } A[i,j] = L_0 \text{ + no. of elements in (k-1) dig + 1D cross}\]
\[\text{loc. of } A[i,j] = L_0 \text{ + no. of elements in (k-1) dig + (i-i/b) or (j-j/b)}\]
but here \(i/b\) is varying diagonal by diagonal
so prefer \(j/b\) which is always 1 in each diagonal
\[= L_0 \text{ + no. of elements in (k-1) dig + (j-1)}\]

No. of elements in \((k-1)\) diagonals is
\([n-(a-1)]+[n-(a-1)+1] + [n -(a - 1) + 2] + \ldots [n-a+(k-1)]\]
\([n-(a-1)] \rightarrow 1\)st diagonal because it is \((a-1)\)th diagonal
\([n-(a-1)+1] \rightarrow 2\)nd diagonal
\([n-(a-1)+2] \rightarrow 3\)rd diagonal
\([n-a+(k-1)] \rightarrow (k-1)\)th term i.e. \((k-1)\)th diagonal
\[= (k - 1) (n-a) + 1 + 2 + \ldots + k - 1\]
\[= (k - 1) (n-a) + \frac{k(k-1)}{2}\]
\[\therefore \text{loc. of } A[i,j] = L_0 + \left[(k-1)(n-a) + \frac{k(k-1)}{2} + (j-1)\right]\]
01. (i) Ans: (a) (ii) Ans: (c)

Sol: Given array size m, say 9

Number of stacks n, say 3

\[0 \leq i < n \quad T[i] = B[i] = \left\lfloor \frac{m}{n} \right\rfloor - 1 \]

\(i = 0 \Rightarrow T[0] = B[0] = 0 \left\lfloor \frac{9}{3} \right\rfloor - 1 = 0 - 1 = -1 \)

\(i = 1 \Rightarrow T[1] = B[1] = 1 \left\lfloor \frac{9}{3} \right\rfloor - 1 = 3 - 1 = 2 \)

\(i = 2 \Rightarrow T[2] = B[2] = 2 \left\lfloor \frac{9}{3} \right\rfloor - 1 = 2[3] - 1 = 5 \)

when \(i = 3 \Rightarrow B[3] = m - 1 = 9 - 1 = 8 \)

(i) Push = overflow = size

(ii) POP = underflow = initial

\[
\begin{array}{|c|c|c|}
\hline
0 & 1 & 2 \\
\hline
B & \text{underflow cases} & T[i] = B[i] \\
\hline
0 & 3 & 6 \\
1 & 4 & 7 \\
2 & 5 & 8 \\
\hline
\end{array}
\]

0th stack 1st stack 2nd stack

\[
\begin{array}{|c|c|c|}
\hline
0 & 1 & 2 \\
\hline
\hline
T[0] & over flow & B[3] \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
0 & 1 & 2 \\
\hline
\hline
\hline
\end{array}
\]
02. Ans: (b)
Sol:

<table>
<thead>
<tr>
<th>Stack operation</th>
<th>Push (10)</th>
<th>Push (20)</th>
<th>Pop</th>
<th>Push (10)</th>
<th>Push (20)</th>
<th>Pop</th>
<th>Pop</th>
<th>Pop</th>
<th>Push (20)</th>
<th>Pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Pop list</td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20, 20, 10</td>
<td>20, 20, 10, 10</td>
<td>20, 20, 10, 10, 20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The sequence of popped out values ⇒ 20, 20, 10, 10, 20

03. Ans: (d)
Sol:

An instance of array having two stacks is shown above. Stack1 occupied from 1 to MAXSIZE and stack2 occupied from MAXSIZE to 1. Above shown array is filled completely. So condition for ‘stack full’ is
Top 1 = Top 2 – 1

04. Ans: (c)
Sol: Stack S is

<table>
<thead>
<tr>
<th>2 S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

05. Ans: (b)
Sol: Stack insertion order ⇒ 1, 2, 3, 4, 5. The only possible output sequence 3, 4, 5, 2, 1
That occurs when
Push (1)
Push (2)
Push (3)
Pop (3) → 3
(∵ There is no constraint on the order of deletion operations)
Push (4)
Pop (4) → 3, 4
Push (5)
Pop (5) → 3, 4, 5
Pop (2) → 3, 4, 5, 2
Pop (1) → 3, 4, 5, 2, 1
Other remaining combinations are not possible
06. Ans: 321

Sol: invocation tail (3)

T (3) = 3
T (2) = 2
T (1) = 1
T (0) = stop
Output: 3, 2, 1

07. Ans: 1213121

Sol:

Output: 1213121

08. (i) Ans: 41

Sol: Number of calls for evaluating

\[f(n) = 2 \times f(n+1) - 1 \]

The total number of calls in

Fibonacci (8) = 2 \times 34 - 1 = 68 - 1 = 67

(ii) Ans: 67

Sol: Number of calls for evaluating

\[f(n) = 2 \times f(n+1) - 1 \]

The total number of calls in

Fibonacci (8) = 2 \times 34 - 1 = 68 - 1 = 67

(iii) Ans: 54

Additions = f(n+1) - 1

f(9) = f(10) - 1 = 55 - 1 = 54
09. Sol: Ackerman(m, n) =
\[\begin{align*}
&= n + 1 & \text{if } m = 0 \\
&= \text{Ackerman}(m - 1, 1) & \text{if } n = 0 \\
&= \text{Ackerman}(m - 1, \text{Ackerman}(m, n - 1)) & \text{otherwise}
\end{align*} \]

(i) Ans: 9
Sol: Ackerman(2, 3) = A(1, A(2, 2)) = A(1, 7)
A(2, 2) = A(1, A(2, 1)) = A(1, 5) = 7
A(2, 1) = A(1, A(2, 0)) = A(1, 3) = 5
A(2, 0) = A(1, 1) = 3
A(1, 1) = A(0, A(1, 0)) = A(0, 2) = 2+1 = 3
A(1, 0) = A(0, 1) = 2
A(0, 1) = 1 + 1 = 2
A(1, 3) = A(0, A(1, 2)) = A(0, 4) = 4 + 1 = 5
A(1, 2) = A(0, A(1, 1)) = A(0, 3) = 3 + 1 = 4
A(1, 5) = A(0, A(1, 4))
= A(0, 0, A(1, 3)))
= A(0, 0, 5))
= A(0, 6) = 6 +1 = 7
A(1, 7) = A(0, A(1, 6))
= A(0, 0, A(1, 5))
= A(0, 0, 7))
= A(0, 8) = 9
Ackerman(2, 3) = 9

(ii) Ans: 13
Sol: Ackerman(2, 5) = A(1, A(2, 4))
= A(1, A(1, A(2, 3)))
= A(1, A(1, 9))
A(1, 9) = A(0, A(1, 8))
= A(0, A(0, A(1, 7)))
= A(0, A(0, 9)))
= A(0, 10)
= 11

(iii) Ans: 4
Sol: Ackerman(0, 3) = 4

(iv) Ans: 5
Sol: Ackerman(3, 0) = A(2, 1)
A(2, 1) = A(1, A(2, 0))
A(2, 0) = A(1, 1)
A(1, 1) = A(0, A(1, 0))
A(0, 1) = 2
A(0, 1) = 1 + 1 = 2
A(1, 3) = A(0, A(1, 2)) = A(0, 4) = 4 + 1 = 5
A(1, 2) = A(0, A(1, 1)) = A(0, 3) = 3 + 1 = 4
A(1, 5) = A(0, A(1, 4))
= A(0, A(0, A(1, 3)))
= A(0, A(0, 5))
= A(0, 6) = 6 +1 = 7
A(1, 7) = A(0, A(1, 6))
= A(0, A(0, A(1, 5))
= A(0, 0, A(1, 7)))
= A(0, 0, 7))
= A(0, 8) = 9
Ackerman(3, 0) = 5

10. Sol: (a) After \(N + 1 \) calls we have the first move.
So after 4 calls we have the first move.
(b) After total calls \(-1\) calls, we have the last move.
(c) Total moves \(2^N - 1 = 7 \)
(d) Total invocations \(2^{N+1} - 1 = 2^4 - 1 = 15 \)

11. Ans: (b)
Sol: Post fix expression A B C D + * F /+DE * +
12. Ans: (a)
Sol: \[a = - b + c \times \frac{d}{e} + f \uparrow g \uparrow h - i \times j \]
Prefix:
\[a = - b + c \times \frac{d}{e} + (f \uparrow gh) - i \times j \]
\[a = - b + \frac{cde}{e} + (f \uparrow gh) - i \times j \]
\[a = - b + cde + f \uparrow gh - *ij \]
\[a = + b/cde + f \uparrow gh - *ij \]
\[a = + + - b/cde \uparrow f \uparrow gh *ij \]
\[\Rightarrow a = + + - b/cde \uparrow f \uparrow gh *ij \]

13. Ans: (a)
Sol: Infix expression: \[(a + (b \times c)) - (d / (e - f)) \]
Postfix expression: \[abc \times +def \]
Value of the postfix expression is 142

14. Ans: (a)
Sol:
\[8 \quad 2 \quad 3 \quad 8 \quad 8 \quad 1 \quad 2 \quad 2 \quad 3 \quad 6 \]
\[2 \quad 8 \quad 3 \quad 2 \quad 1 \quad 1 \quad 1 \]
\[2 \times 3 \quad 8 \quad 8 \]
\[2 \wedge 3 \quad 8 / 8 \]
\[= 6 \]
\[= 6 \]
\[\Rightarrow \text{The top two elements are 6, 1} \]

15. Ans: (c)
Sol: \[10, 5, +, 60, 6, /, *, 8, - \]
\[10 \quad 5 \quad 10 \quad 10 + 5 = 15 \]
\[15 \]
\[60 \]
\[15 \]

16. Ans: (c)
Sol: (i) ab
(ii) b
(iii) byz
(iv) yz
Output is \[\Rightarrow yz \]

17. Ans: (b)
Sol:
\[\ldots 4 \quad 0 \quad 4 \ldots \]
Queue rear Replace with predecessor

18. Ans: (i) 322 and (iii) 324
Sol:
\[302 \quad 318 \quad 320 \quad 322 \quad 324 \quad 326 \quad 328 \quad 336 \]
Until first ‘0’ is encountered, stack contains

\[
\begin{array}{c}
9 \\
6 \\
5 \\
\end{array}
\]

So 5 + 6 + 9 = 20 is enqueued in Q_2 \ @ \ loc 326

Until second ‘0’ is encountered, stack contains

\[
\begin{array}{c}
7 \\
5 \\
\end{array}
\]

So 5 + 7 = 12 is enqueued is Q_2 \ @ \ loc 328

Then simply 2 and 6 are pushed in stack

\[
\begin{array}{c|c}
322 & 324 \\
6 & 2 \\
\end{array}
\]

So the location of 6 and 20 are 322 and 324

19. **Ans (c)**

Sol: Suppose that array contains

Initial configuration:

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
_ & a & b & | & | & c \\
R & F & \uparrow & \uparrow & _ & _ \\
\end{array}
\]

Delete element

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
_ & a & b & | & | & c \\
F & R & \uparrow & \uparrow & _ & _ \\
\end{array}
\]

Now two added

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
_ & a & b & x & y & _ \\
F & R & \uparrow & _ & _ & _ \\
\end{array}
\]

\[\therefore (R, F) = (4, 1)\]

Option (c).

20. **Ans: (b)**

Sol: The given recursive procedure simply reverses the order of elements in the queue. Because in every invocation the deleted element is stored in ‘i’ and when the queue becomes empty.

Then the insert () function call will be executed from the very last invoked function call. So, the last deleted element will be inserted first and the procedure goes on

3. **Linked Lists**

01. **Ans: (d)**

Sol:

Dequeue ()

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
_ & a & b & _ & _ & _ \\
F & R & \uparrow & \uparrow & _ & _ \\
\end{array}
\]

\[\Rightarrow (R, F) = (4, 1)\]

02. **Ans: (d)**

Sol:

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
_ & a & b & _ & _ & _ \\
F & R & \uparrow & \uparrow & _ & _ \\
\end{array}
\]

\[\Rightarrow (R, F) = (4, 1)\]

03. **Ans: (a)**

Sol: while (P) or while (P!= Null)

while P is pointing to somebody
04. Ans: (d)
Sol: Recursive routine for ‘Count’

No. of nodes = 4

05. Ans: (b)
Sol: either causes a null pointer dereference or append list m to the end of list n.

06. Ans: (b)
Sol:

Before

After

Logic

07. Ans: (b)
Sol: This is recursive routine for reversing a SLL.

08. Ans: (a)
Sol:

Before

After

concatenation of two single linked lists by choosing alternative nodes.

09. Ans: (d)
(i) Struct Node * n = Get Node () ;
(ii) n -> data = X ;
(iii) n -> Next = Cur -> Next ;
(iv) Cur -> Next = n

10. Ans: (a)
Sol: Linked stack push () = insert front ()

Initial

Do ()

Do(a)

Do(b)
11. Sol:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Left most</th>
<th>Right most</th>
<th>Middle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Delete</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

12. Ans: (b)
Sol: Inserts to the left of middle node in doubly linked list.

13. Ans: (a)
Sol: Before reverse:

After reverse:

4. Trees

01. Ans: (d)
Sol: 1. Traverse the left subtree in postorder.
 2. Traverse the right subtree in postorder.
 3. Process the root node

02. Ans: (c)
Sol: 1. Traverse the right subtree in postorder.
 2. Traverse the left subtree in postorder.
 3. Process the root node

03. Ans: (c)
Sol:

\[A(t) = a \ b \ c \ d \ f \ g \ e \]
04. Ans: (b)
Sol:

\[B(t) = \text{b, d, c, a, e, f, g} \]

05. Ans: 5
Sol:

Note: The number of binary trees can be formulated with unlabeled nodes are
\[\frac{2^n C_n}{n+1} \].

\[\vdash \text{Totally 5 distinct trees possible} \]

06. Ans: (c)
Sol:

Preorder: A B C D E F G
In-order: B D C A F G E
Post-order: D C B G F E A

07. Ans: 3
Sol: Note: If pre-order is given, along with terminal node information & all right child information the unique pattern can be found. If post-order is given along with terminal information and all left child information the unique pattern can be identified.
08. Ans: 3
Sol:

09. Ans: 4
Sol: Post 8 9 6 7 4 5 2 3 1
In 8 6 9 4 7 2 5 1 3

Post 8 9 6 7 4 5 2 3 1
In 8 6 9 4 7 2 5 1 3
Height = 4

10. (a) Ans: 19
Sol: Leaf nodes (L) = Total nodes – internal nodes
L = In+1-I
L = I(n-1)+1
L = 20
I = ?
20 = I(2 – 1) +1
20 = I + 1
I = 19

10. (b) Ans: 199
Sol: L = I(n-1)+1
L = 200
200 = I + 1
I = 199

11. Ans: (b)
Sol:

Minimum = 3, Maximum = 14
12. Ans: 2 & 1
Sol:

13. Ans: (a)
Sol:

Before Swap
\[
\begin{array}{c}
 \text{c} \\
 \text{b} \\
 \text{e} \\
 \text{d} \\
 \text{a} \\
\end{array}
\]

After swap
\[
\begin{array}{c}
 \text{c} \\
 \text{b} \\
 \text{e} \\
 \text{d} \\
 \text{a} \\
\end{array}
\]

14. Ans: (d)
Sol:

15. Ans: 3
Sol: a (b, c (e (f, g, h)), d)

Parent of f, g, h is e, i.e. internal parenthesis has children of parent which is out of parenthesis.

16. Ans: 4
Sol: Given are 3 trees

To get the converted binary tree of these given trees
17. Ans: (d)
Sol: Count the number of trees in forest.

18. Ans: (b)
Sol:

19. Ans: 6
Sol: Expanded as
\[((1+1) - (0 - 1)) + ((1 - 0) + (1+1))\]
\[= 3 + 3 = 6\]

20. Ans: –2
Sol: \[(0 + 0) - (1 - 0) + (0 - 1) + (0 + 0)\]
\[= -1 + (-1) = -2\]

21. Ans: 4
Sol:

22. Ans: (b)
Sol: Preorder = 12, 8, 6, 2, 7, 9, 10, 16, 15, 19, 17, 20
Inorder = 2, 6, 7, 8, 9, 10, 12, 15, 16, 17, 19, 20

In the diagram, the tree structure is shown with nodes labeled from A to V and operations indicated with arrows and symbols. The solutions are derived from these operations and the given conditions.
23. Ans: 4
Sol:
```
SUN MON TUE
SUN MON TUE
```

Sol: 71, 65, 84, 69, 67, 83 insert into empty binary search tree
```
71
65 84
69 67 83
```

\[\therefore \text{Element in the lowest level is 67}\]

25. Ans: 30

26. Ans: (d)
Sol: (a) 5 3 1 2 4 7 8 6
```
5
3 7
1 4
2
Not possible
```
```
5
3 7
1 4
2
```
```
5
3 7
1 4
2
```

Not possible
IN: not sorted order

27. Ans: 15
Sol: 1. Jump right
2. Go on descend left
28. Ans: 88
Sol:

\[\begin{align*}
N(H) &= \begin{cases}
1 & L = H = 0 \\
2 & L = H = 1 \\
1 + N(H-1) + N(H-2) & (L = H > 1)
\end{cases} \\
N(0) &= 1 \\
N(1) &= 2 \\
N(2) &= 1 + N(1) + N(0) \\
&= 1 + 2 + 1 \\
&= 4 \\
N(3) &= 1 + N(2) + N(1) \\
&= 1 + 4 + 2 \\
&= 7 \\
N(8) &= 1 + N(7) + N(6) \\
&= 1 + 54 + 33 \\
&= 88
\end{align*} \]

<table>
<thead>
<tr>
<th>(H)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(H))</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>88</td>
</tr>
</tbody>
</table>

29. Ans: 14
Sol:

\[\begin{align*}
21, 26, 30, 9, 4, 14, 28, 18, 15, 10, 2, 3, 7
\end{align*} \]
30. Ans: 28
Sol:
Delete 2, 3

Delete 18, 4, 9

Delete 14

Delete 7
5. Graphs

01. Ans: (b)
Sol: V₈ is pushed in for two times

Input

Output: 1, 2, 4, 5, 6, 3, 7.

V₈: Two times

02. Ans: 2
Sol: Sequence of exploration
V₅→V₂→V₁→V₃→V₆→V₈→V₇→V₄

Sequence of stack contents
Not pushed vertices are → V₆, V₇, V₅
Vertices are not pushed in more than once → V₁, V₄, V₈

03. Ans: 3
Sol: Sequence of exploration
V₈→V₄→V₂→V₁→V₃→V₆→V₇→V₅

Sequence of stack contents
Not pushed vertices are → V₄, V₇
Vertices are pushed in more than once → V₁, V₂, V₃, V₆, V₅

04. Ans: (a)
Sol: (a) invalid (b) valid (c) valid (d) valid

05. Ans: (c)
Sol: (a) valid (b) valid (c) invalid (d) valid
06. Ans: 19
Sol:
Maximum possible recursion depth = 19
(The dashed link ‘nodes’ are explored while stepping backward.)

07. Ans: 8
Sol:
Minimum possible recursion depth = 8
(The dashed link ‘nodes’ are explored while stepping backward.)

08. Ans: (d)
Sol:
Traversal: BFS

09. Ans: (c)
Sol: (a) valid (b) valid
(c) invalid (d) valid

10. Ans: (d)
6. Hashing

01. Ans: (d)
Sol:
\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\]

02. Ans: (a)
Sol:
\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
28 & 29 & 30 & 31 & 32 & 33 & 34
\end{array}
\]

03. Ans: 80
Sol:
\[
\text{Load factor} = \frac{\text{elements}}{\text{slots}} = \frac{2000}{25} = 80
\]

04. Ans: (b)
Sol:
Hash function
\[
h(x) = (3x + 4) \mod 7
\]
\[
h(1) = (3+4) \mod 7 = 0
\]
\[
h(3) = (9+4) \mod 7 = 6
\]
\[
h(8) = (24+4) \mod 7 = 0
\]
\[
h(10) = (30+4) \mod 7 = 6
\]
Assume Linear probing for collision resolution
The table will be like
\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1 & 8 & 10 & 3 & 4 & 5 & 2
\end{array}
\]

05. Ans: (d)
Sol:
After inserting all keys, the hash table is
\[
\begin{array}{ccccccccccc}
\text{Key} & 43 & 36 & 92 & 87 & 11 & 4 & 71 & 13 & 14 \\
\text{Loc} & 10 & 3 & 4 & 10 & 0 & 4 & 5 & 2 & 3
\end{array}
\]
\[
\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
87 & 11 & 13 & 36 & 92 & 4 & 71 & 14 & 43
\end{array}
\]
Last element is stored at the position 7

06. Ans: (c)
Sol:
Resultant hash table.
In linear probing, we search hash table sequentially starting from the original location. If a location is occupied, we check the next location. We wrap around from the last table location to the first table location if necessary.
07. Ans: (c)
Sol:
\[
\begin{array}{cccc}
 & A & B & C & D \\
0 & & & & \\
1 & 42 & 42 & 42 & 42 \\
2 & 52 & 23 & 23 & 23 \\
3 & 34 & 34 & 34 & 23 \\
4 & 23 & 52 & 52 & 34 \\
5 & 46 & 33 & 46 & 46 \\
6 & 33 & 46 & 33 & 52 \\
7 & & & & \\
8 & & & & \\
9 & & & & \\
\end{array}
\]

08. Ans: (c)
Sol: Case (I): To store 52
Case (II): To store 33
\[
\begin{array}{|c|c|c|c|}
\hline
\text{Variable part} & \text{Fixed part} \\
\hline
42 & 23 & 34 & 52 & 46 & 33 \\
42 & 34 & 23 & 52 & 46 & 33 \\
23 & 42 & 34 & 52 & 46 & 33 \\
23 & 34 & 42 & 52 & 46 & 33 \\
34 & 42 & 23 & 52 & 46 & 33 \\
34 & 23 & 42 & 52 & 46 & 33 \\
\hline
\end{array}
\]

\[
3! = 6
\]

\[
\begin{array}{|c|c|c|}
\hline
\text{Variable part} & \text{Fixed part} \\
\hline
42 & 23 & 34 & 52 & 46 & 33 \\
\hline
\end{array}
\]

\[
4! = 24
\]

Since 46 is not getting collided with any other key, it can be moved to the variable part.
Case (I) & Case (II) are mutually exclusive
Case (I) + Case (II) = 24 + 6 = 30
Total 30 different insertion sequences