
CIVIL ENGINEERING

GATE | PSUs

CONSTRUCTION MATERIALS & MANAGEMENT

Volume - I & II : Study Material with Classroom & Self Practice Questions (Workbook)

Construction Materials and Management Solutions for Volume : I Classroom Practice Questions

Chapter- 5 PERT

13. Ans: (a)
Sol:
$$t_E = \frac{t_o + 4t_L + t_P}{6}$$

 $= \frac{8 + 4 \times 9 + 13}{6} = 9.5$
Variance, $\sigma^2 = \left(\frac{t_p - t_o}{6}\right)^2 = \left(\frac{13 - 82}{6}\right)^2$
 $\sigma^2 = \frac{25}{36}$

29. Ans: 50% & 95.2% Sol:

(a)
$$T_E = 24 \text{ month}$$

 $\sigma = 3.6$
 $Z = \frac{T_S - T_E}{\sigma}$
 $Z = \frac{24 - 24}{3.6} = 0$
From table probability = 3

From table probability = 50%

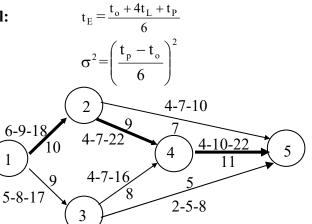
(b)
$$Z = \frac{30 - 24}{3.6}$$

Z = 1.67
From table probability = 95.2%

30. Ans: 65.76 & 58.25 weeks Sol:

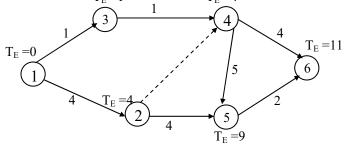
a)
$$T_E = 60$$
 weeks
 $\sigma^2 = 20.25$
P (%) = 90 %
 $\Rightarrow Z = 1.28$

ACE Engineering Publications Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata

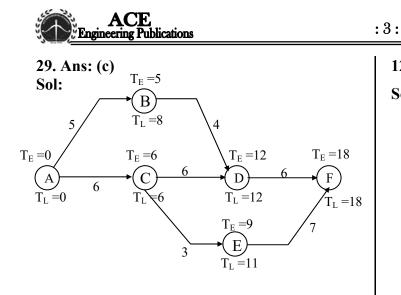

Std deviation = $\sqrt{\text{variance}} = \sqrt{20.25}$ $\sigma = 4.5$ $1.28 = \frac{T_s - T_E}{4.5}$ $T_s = 65.76$ weeks

b)

P(%) = 35%For P(%) = 35 % From table, Z = -0.387 $-0.387 = \frac{T_{s} - T_{E}}{4.5}$ $T_{E} = weeks$ = 58.25 weeks


31. Ans: 90.32%

Sol:


Activity	$t_0 - t_L - t_P$	t _E	σ^2
1-2	6-9-18	10	4
1-3	5-8-17	9	4
2-4	4-7-22	9	9
3-4	4-7-16	8	4
2-5	4-7-10	7	1
4-5	4-10-22	11	9
3-5	2-5-8	5	1

Critical path: 1 - 2 - 5 =10 + 7 = 171 - 2 - 4 - 5 = 10 + 9 + 11 = 301 - 3 - 4 - 5 = 9 + 8 + 11 = 281 - 3 - 5 =9 + 5= 14Critical path = 1 - 2 - 4 - 5 $T_E = 30 \text{ days}; T_S = 36 \text{ days}$ $Z = \frac{T_s - T_E}{\sigma}$ To calculate σ :- σ^2 of critical path $\sigma^2 = 4 + 9 + 9 = 22$ $\sigma = \sqrt{22} = 4.69$ $Z = \frac{36 - 30}{4.69} = 1.27 \simeq 1.3$ From the table $Z = 1.3 \Rightarrow$ probability = 90.32 % **Chapter-6 CPM** 27. Ans: (c) Sol: $T_E = 4$ $T_E = 1$

 \therefore Earliest start time for activity 5 - 6 = 9 days

ACE Engineering Publications Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata

$$\begin{split} F_{T(AB)} &= LST - EST \\ EST &= 0 \\ LST &= 8 - 5 = 3 \\ F_{T(AB)} &= 3 \\ F_{T(CE)} &= LST - EST \\ &= (11 - 3) - 6 = 2 \\ F_{F(EF)} &= \left(T_{E}^{j} - T_{E}^{i}\right) - t^{ij} \\ &= 18 - 9 - 7 \\ &= 2 \end{split}$$

Chapter- 7 CPM Cost Analysis

11. Ans: (a)

Sol:

Week	Parallel Activities	Total Resource Load
9 th	А	6
11 th	A + B	6 + 4 = 10
13 th	A + B + D	6+4+7=17
15 th	A + B + C + D	6+4+3+7=20

From the above, the maximum resource load per week is 20

12. Ans: (c)

Sol: From the data given, the maximum time for the project is 11 days and minimum time is 9 days.

For 11 days, the total direct cost is: 800 + 1200 + 500 = 2500 units.

For 10 days, the total direct cost is: 800 + 1350 + 500 = 2650 units.

For 9 days, the total direct cost is: 900 + 1500 + 500 = 2900 units. \therefore The feasible range of total direct cost varies

from 2500 to 2900.

13. Ans: (a)

Sol: From the given diagram, on the 21^{st} & 22^{nd} day three concurrent activities are there with a total resources of 6 + 7 + 9 = 22.

Minimum resource occurs when only one activity exists. In the present case it is 6 per day.

: Maximum resources is 22 and minimum is 6

ACE Engineering Publications Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata