

COMPUTER SCIENCE & INFORMATION TECHNOLOGY

Volume - I: Study Material with Classroom Practice Questions

Computer Networks

(Classroom Practice Booklet Solutions)

1. Concept Of Layering

01. Ans: (b)

Sol: Data Link Layer is responsible for decoding bit stream into frames.

02. Ans: (c)

Sol: Network Layer has the functionality of determining which route through the subnet to use.

03. Ans: (c)

Sol: Given: At each layer, n bits of information is added/appended.

= nh

Total message = original message+overhead m + nh

% of overhead =
$$\frac{nh}{m+nh} \times 100$$

04. Ans: (b)

05. Ans: (b)

Sol: Network Layer – 4 times Data Link Layer – 6 times

Layer visited

Layer 7 – 2 times Layer 6 – 2 times Layer 5 – 2 times Layer 4 – 2 times Layer 3 – 4 times \rightarrow Network Layer Layer 2 – 6 times \rightarrow Data Link Layer Layer 1 – 6 times

06. Ans: (c)

Sol: Transport Layer is responsible for the End to End delivery of the entire message.

07. Ans: (a)

Sol: Data link layer ensures reliable transport of data over a Physical point to point link. Network layer routes data from one network node to next.

Transport layer allows end to end communication between two processes.

08. Ans: (c)

Sol: Fragment: Network layer (fragmentation) Segment: Transport layer (segmentation) There is a restriction on the message length in the subnet, so breaking the lengthy message starts at transport layer.

2. LAN Technologies

01. Ans: (c)

Sol: When the transmission delay is high and propagation delay is low the number of collisions decreases. When the collisions decreases throughput increases.

02. Ans: (a)

Sol: Ethernet uses Manchester encoding in which is bit has two signal segments, so $10Mbps = 10 \times M \times 2$ signal segments per seconds = 20 mega baud.

03. Ans: (c)

Sol: B = 1 Gbps d = 1 km v = 200000 km/sec; L = ? $\frac{L}{B} = 2 * \frac{d}{v}$ L = 2 × $\frac{1}{200000} \times 10^{9}$ = 10000 bits or 1250 bytes

04. Ans: 200

Sol: L = ? B = 20 Mbps $T_p = 40 \text{ micro sec}$ $T_x = L/B$ = 100 ms $T_x = 2T_p$ $\frac{L}{B} = 2 T_p$ $L_{min} = 2T_p \times B$ = 2 × 40 × 10⁻⁶ × 20 × 10⁶ = 2(40) (20) bits = 1600 bits = 200 Bytes

05. Ans: (b)

Sol: Collision number for A is 1, and for B it is 2.
Possible numbers for 'A' from backoff algorithm is (0,1), for B they are (0, 1, 2, 3)
Going by the Combinations, A will have 5 chances and B has 1 chance out of 8.
Rest of the two is Undecided.

$$n = 1, A = (0,1), B = (0,1)$$

Α	В	Remark
0	0	Collision
0	1	$A = \frac{1}{4}$
1	0	B = 1/4
1	1	Collision

$$n = 2, A = (0,1), B = (0,1,2,3)$$

Α	В	Remark
0	0	Collision
0	1	А
0	2	А
0	3	А
1	0	В
1	1	Collision
1	2	А
1	3	А

:.
$$A = \frac{5}{8} = 0.625$$
, $B = \frac{1}{8} = 0.125$
Hence Probability for 'A' in 5/8 = 0.625

06. Ans: (c)

Sol: Frame Transmission time = $1000/10 \times 10^6$

 $= 100 \mu s$

At time t = 0 both A & B transmit

At time $t = 12.5 \mu s$ a detects collision

At time t = 25 μ s Last bit of B's aborted transmission arise at A. At t = 37.5 μ s first bit of A's retransmissions arrives at B.

At 37.5 μ s A's packet is completely arrives B. 100 + 37.5 = 137.5

07. Ans: 0.4404

Sol: All k-stations For a stations $P(1 - P)^k$ For some stations among k-station $= k P(1-P)^{k-1}$

For S₄ (0.9) (0.8) (0.7) (0.4) = 0.2016

0.4404

Probability for any one station among S_1 , S_2 , S_3 , S_4 to send a frame without collision = 0.4404.

08. Ans: (b)

Sol: B = 10 Mbps Slot time = 51.2 µsec L = 512 bytes Number of slots = 1.716 Transmission time = $\frac{L}{B}$ $= \frac{512 \times 8(bits)}{10 \times 10^6}$ $= 4.096 \times 10^{-4}$ Contention width = no. of slots × slot time $= 1.716 \times 51.2 = 87.85$ µsec $= 87.85 \times 10^{-6}$ seconds $\eta = \frac{\frac{L}{B}}{contention width + \frac{L}{B}}$ $\eta = \frac{4.096 \times 10^{-4}}{4.096 \times 10^{-4} + 87.85 \times 10^{-6}} = 82.3\%$

3. Data Link Layer

01. Ans: (c)

Sol:

1011)	01011011000 (01000011
	1011
	1100
	1011
	1110
	1011
	CRC

02. Ans: (a)

1	2	3	4	5	6	7	8	9	10	11
<u>1</u>	<u>0</u>	<u>1</u>	<u>1</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>
2^{0}	2^{1}		2^{2}				2^{3}			

3=1+2	$1 \rightarrow 10011$	Even parity
5=1+4	1 -> 10011	1
6=2+4	$2 \Rightarrow 11011$	0
7=1+2+4	$4 \rightarrow 010$	1
9=1+8	+ 010	1
10=2+8	$8 \rightarrow 111$	1
11=1+2+8	$0 \rightarrow 111$	-

Hamming code = 10110101111

03. Ans: 4.7

L = 1000 bits d = 100×10^3 m V = 2×10^8 m/sec B = 20 Mbps = 20×10^6 bps $T_{X} = \frac{L}{B} = \frac{1000 \text{ bits}}{20 \times 10^{6} \text{ bps}} = 5 \times 10^{-5} \text{ sec}$ $T_{P} = \frac{d}{v} = \frac{100 \times 10^{3} \text{ m}}{2 \times 10^{8} \text{ m/sec}} = 5 \times 10^{-4} \text{ sec}$ $a = \frac{T_{P}}{T_{X}} = \frac{5 \times 10^{-4}}{5 \times 10^{-5}} = 10$ Efficiency (\(\eta\)) = $\frac{1}{1+2a}$ $= \frac{1}{1+2 \times 10} = \frac{1}{21} = 0.047 = 4.7\%$

04. Ans: 160 bits Sol: B = 4 Kbps Propagation delay = 20 msec $\eta = 50\%$ RTT = 2 × Propagation = 40 msec L = BR N = 50 then L = BR = 4 × 10³ × 40 × 10⁻³ = 160 bits

05. Ans: 10.8 Sol: B = 1.5 Mbps RTT (Round Trip Time) = 45ms L = 1 KB Link utilization = $\frac{L}{L + BR}$ $\frac{1024 \times 8}{(1024 \times 8) + 1.5 \times 10^6 \times 45 \times 10^{-3}}$ = $\frac{8192}{8192 + 67500} = \frac{8192}{75692} = 0.108 = 10.8\%$

06. Ans: (c)

Sol: Propagation delay = 100 μ sec d = 20 KM L = 1 Kb = 1024 ×8 bits B =? RTT = Transmission delay RTT = 2 × Propagation delay RTT = 200 μ sec Transmission delay = $\frac{L}{B}$

$$B = \frac{1024 \times 8}{200 \times 10^{-6}} = 40 \text{ Mbps}$$

07. Ans: 2500
Sol: B = 80 kbps
L = 1000 bytes

$$T_p = 100 \text{ ms}$$

 $T_x = L/B = 100 \text{ ms}$
Tax = ack size/ bandwidth = 100 ms
Efficiency = tx/(tx +2tp+tax) = $\frac{100}{400} = 0.25$
Throughput = efficiency * bandwidth
= 0.25 *10⁴ bytes
= 2500 bytes

08. Ans: (c) Sol: L = 1000 bits frame $BER = 4 \times 10^{-5}$

 $d = 100 \text{ km} = 100 \times 10^{3} \text{ m}$ $B = 20 \text{ Mbps} = 20 \times 10^{6} \text{ bps}$ $v = 2 \times 10^{8} \text{ m/sec}$ $T_{x} = \frac{L}{B} = \frac{1000}{20 \times 10^{6}} = 0.5 \times 10^{-4}$ $T_{p} = \frac{d}{v} = \frac{100 \times 1000}{2 \times 10^{8}} = 0.5 \times 10^{-3}$ **GBN** w = 10 $= \frac{w(1 - LP)}{(1 + 2a)[1 + LP(w - 1)]}$ $= \frac{10 \times 0.96}{21 \times [1 + 0.04 \times 9]}$ $= \frac{9.6}{28.56}$ = 0.336

 $= 33.6\% \cong 34\%$

w = 10 $T_{P} = 0.5 \times 10^{-3}$ $T_{X} = 0.5 \times 10^{-4}$ $a = \frac{T_{P}}{T_{X}} = \frac{0.5 \times 10^{-3}}{0.5 \times 10^{-4}} = \frac{1}{0.1} = 10$ a = 10So, 1 + 2a = 1 + 2 (10) = 21Here (w) < (1 + 2a) so smaller window Efficiency = $\frac{w(1 - LP)}{1 + 2a}$ $= \frac{10(1 - LP)}{21}$ $= \frac{10 \times 0.96}{21} = \frac{9.6}{21} = 0.457$ $\approx 46\%$

ACE Engineering Academy

I

09.	Ans: (d)	for SR
Sol:	512 bytes x 8 bits/B = 4096 bits per frame	$W_{p} = 610$
	4096/64000bps= 64 msec to send one frame	so $k = 10$ bits
	Round trip delay = 540 msec	
	Window size 1: send 4096 bits per 540msec	12. Ans: (c)
	$4096bits/540msec = 7.585 \times 103 bps throughput$	Sol: $d = 3000 \text{ km}$
	Window size 7 : 7585 x 7 = 53096 bps	B = 1.536 Mbps
	Window size 9 and greater:	L = 64 bytes
	$7585 \times 9 = 68265$ bps but the maximum capacity is 64 kbps so for window sizes	Propagation speed = $6 \ \mu sec/km$
	greater than 9 the maximum throughput is	Propagation delay for 3000 km
	64 kbps	\Rightarrow 3000 × 6 µsec
		(1) RTT = $2 \times 18000 \ \mu sec$
11.	Ans: (d)	$= 36000 \times 10^{6}$
Sol:	B = I Mbps	= 36 msec
	Latency delay (or) Dramagation delay $= 1.25$ and	(2) 1 sec \rightarrow 1.536 \times 10 ⁶ bits
	I = 1 KB	36 ms?
	(1) $RTT = 2 \times 1.25$	wbits
	= 2.5 sec	(3) $\omega_{\rm p} = \overline{({\rm pktsize})}$
	(2) 1 sec = 1×10^6 bits	$1.526 \times 10^{6} \times 26 \times 10^{-3}$
	2.5 sec =?	$=\frac{1.550 \times 10^{-10} \times 50 \times 10^{-10}}{64 \times 9}$
	(3) $\varpi_{p} = \frac{\omega \text{bits}}{\omega}$	-108
	(pkt size)	-100
	$=\frac{2.5\times10^6}{10^6}=305$	(4) Sequence num $\omega_p = 108$
	1024×8	(5) $2^{\kappa} = \omega_{p} \Longrightarrow 2^{\kappa} = 108$
	(4) sequence no. = $\omega_p = 305$ $\therefore 2^k - 305$	$\Rightarrow 2^k = 2^7$
	$\therefore k = 9$ bits for GBN	\Rightarrow k = 7
10.	Ans: 16	

Sol: w = 3

Total 9 packets

Every fifth packet lost

 w = 3 w = 3 w = 3

 Packets
 1
 2
 3
 4
 5 6
 7 8
 9
 7
 8
 9 9

 Attempts
 1
 2
 3
 4
 5 6
 7 8
 9
 7
 8
 9 9

 16

Total 16 attempts

13. Ans: 2%

Sol: Calculation for 100 frames = 3960×100

Overhead

 $100 \times 10 = 4000$ NAK 40 Retransfers = $\frac{4000}{8040}$ Total = 8040 + 396000

% of Bandwith that is wasted = $[8040/(8040+396000)] * 100 = 1.99 \cong 2\%$

= 396000

14. Ans: (b)

Sol: Instantaneously all 4 frames arrive at router.

<u>Time line</u>	<u>Remark</u>	\mathbf{f}_0
t = 0	frame '0' is sent out	
t = 1	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	[01] 2 3 f ₁ ack 0 [01] 2 3 [01] 2 3
t = 2	$ \rightarrow f_1 \text{ is arrived } @ B \rightarrow ack \text{ is sent out} \rightarrow receiver slide down for next frame} \rightarrow f_2 \text{ is sent out} $	f_2 ack 1 f_2 2

→ previous ack is arrived, next round Frame is instantly joined in window

outstanding frames are there in the window = 2, Now onwards

15. Ans: 4 **Sol:** 5 step problem 1. Calculate $RTT = 2(T_p)$ 2. Calculate BR, window size in bits 3. Calculate W = window in packets = BR/L4. For selective repeat, ASN is set to 2W 5. Sequence number, k Bandwidth (B) = 128×10^3 bps Propagation delay $(T_P) = 150$ msec = 1 kilobyte Packet size(L) Transmission delay $(T_t) = \frac{L}{R}$ $T_t = \frac{1 \times 8 \times 10^3 \text{ bits}}{128 \times 10^3 \text{ bps}}$ $\Rightarrow T_t = \frac{1}{16} \sec$ $T_t = 64 \text{ msec}$ W_{S} = sender window size $\eta = \frac{W_{\rm S} \times T_{\rm t}}{T_{\rm t} + 2T_{\rm r}}$ $1 = \frac{W_s \times 64}{64 + 2 \times 150}$ $\frac{364}{64} = W_s$ $W_{S} = 5.6875$ $W_{S} + W_{R} =$ Available sequence numbers for SR $W_S = W_R$ $ASN = 2 \times W_S$ $ASN = 2 \times 5.6875$ ASN = 11.375 No. of bits in the sequence number $= [\log_2 ASN]$ $= \left[\log_{2}^{11.375} \right]$ = 4

16. Ans: (d) Sol: Given: $B = 10^{6}$ bps Distance = 10000 km $T_{P} = 2 \times 10^{8}$ m/s L = 50000 B $p = T_{x} = \frac{L}{B} = \frac{50000 \times 8}{100 \times 10^{4}}$ $= \frac{4}{10} \times \frac{10^{3}}{10^{3}} = \frac{4000}{10} = 400$ msec $q = \frac{d}{v} = \frac{10000 \times 10^{3}}{2 \times 10^{8}}$ $= \frac{1}{20} = \frac{1}{20} \times \frac{10^{3}}{10^{3}} = \frac{1000}{20}$ ms = 50 ms

17. Ans: 89.33 Sol: B = 1 Mbps $T_{p} = 0.75 \text{ ms}$ $T_{proc} = 0.25 \text{ ms}$ Payload = 1980 BAck = 20 BOH = 20 BL = Payload + OH = 1980 + 20 = 2000 Bytes $T_x = \frac{L}{B} = \frac{2000 \times 8}{1 \times 10^6} = 16 \text{ ms}$ $T_{ax} = \frac{20 \times 8}{1 \times 10^6} = 160 \ \mu sec$ = 0.16 msec Total time = $T_x+T_p+T_{proc}+T_{ax}+T_p+T_{aproc}$ = 16ms + 0.75ms + 0.25ms + 0.16ms + 0.75ms= 17.91 ms $\eta = \frac{T_x}{\text{Total Time}}$ $=\frac{16}{17.91}=89.33\%$

4. Switching(Circuit, Packet)

01. Ans: (a)

Sol: Given data Circuit setup time = 'S' sec Bandwidth = bit rate = 'b' bps Path = 'K'-hop Propagation delay = 'd' sec per hop Connection release = not given Packet size = 'p' bits Message size = 'x' bits K = 3K – hop path (hop means jump) $T_{p} = \frac{d}{v} = \frac{m}{m/s} = \sec t$ Total delay = I + II + IIII. Circuit setup time = SII. $T_x = \frac{L}{B} = \frac{\text{messagesize}}{\text{bit rate}} = \frac{x}{b}$ III. T_P =one hop \rightarrow propagation time='d' sec For k hop \rightarrow propagation time ? $= \mathbf{k} \times \mathbf{d}$

02. Ans: (d)

Sol:

• The last packet is getting retransmitted

at k – 1 hops so the delay is $(k-1)\frac{p}{b}$.

- There is no set of time (NO S)
- Transmission delay is x/b

$$=\frac{\mathbf{p}_1+\mathbf{p}_2+..+\mathbf{p}_n}{\mathbf{b}}$$

- Message For k hop \rightarrow propagation time? = k × d
- Total time = $x/b + k.d + (k-1) \frac{p}{b}$

08.

Sol: SM = 255.255.255.192 192 = 1100 0000

Class C network has 24-bits NID and 8 bit HID

(a) 2 bits are borrowed from HID
(b) no. of subnets = 2² = 4
(c) no. of system per subnet = 2⁶ - 2

= 64 - 2 = 62

09. Ans: 158

Sol: /27 clearly indicates that first 3 bits (128, 64, 32) in the last octet are borrowed for subnet, 5 bits for Host ID. and mask is 255.255.25.254. If you perform AND operation between IP (200.10.11.144) and Subnet mask (255.255.255.224) then we get 200.10.11.128. So subnet ID is 128 and network ID is 200.10.11.

We have 5 bits for host ID. We cannot have all 1's in host ID, therefore we will have 11110 (last 5 bits) for the last IP address. Therefore in last octet we will have 10011110, it is 158

10. Ans: 24

11. Ans: (a)

- Sol: (b) 245.248.128.0/21 and 245.248.128.0/22 \rightarrow same 128 can not be given to two subnets
 - (c) 245.248.<u>132</u>.0/22 and 245.248.<u>132</u>.0/21 same 132 can not be given to two subnets
 - (d) 245.248.1360./<u>24</u> and 245.248.132.0/21 same /24 will not be required

12. Ans: (c)

Sol:	128.56.24.0/24	0001	10	00
	128.56.25.0/24	0001	10	01
	128.56.26.0/24	0001	10	10
	128.56.27.0/24	0001	10	11
	C 8 + 8 + 6	hange af bit	ter	Change 00
		0001	10 _	00
	$8+8+6 \rightarrow 22$	128.5	6.24	1.0/22

13. Ans: 26

Sol: For each hop TTL is reduced by 1 (minimum) and there are 6 hops here hence 32 - 6 = 26.

14. Ans: 800 bytes

Sol: Offset 100 means there are 100 fragments before this, 8 bytes for each fragment 800 bytes.

15. Ans: (c)

Sol: For last fragment always M = 0. If HLEN is 10 then header length is 40 bytes (We use scale factor of 4 in HLEN).Therefore total data in fragment is 400 - 40 = 360 bytes. Since offset is 300 total bytes ahead of this fragment is $8 \times 300 = 2400$ bytes (we use scale factor of 8 in offset). Therefore it is last fragment, starting byte is 2400 and ending byte is 2759 (Actually 2400 + 360 = 2760 bytes but byte number starts with zero, so it is from 2400

to 2759)

16. Ans: (c)

Sol: For the first network the maximum allowed payload size =1200 bytes per frame and for the second network the maximum allowed payload size= 400 bytes per frame.

Per packet IP overhead is given as 20 bytes. So first we will calculate the total number of packets formed.

Note: If first network consider:

For first network 2100 bytes will be divided into 2 packets of size 1200 and 900 bytes. So IP overhead of 1st network

= (2* 20=40 bytes)

But given is second network.

For second network 2100 bytes will be divided into 6 packets 5 of 400 bytes and 1 of 100 bytes.

So, IP overhead of the 2nd network

= (6*20 = 120 bytes)

Thus, the maximum IP overhead for the 2nd network = 120 bytes

06. Routing Algorithms

01. Ans: (c)

Sol: Going via B gives (11, 6, 14, 18, 12, 8). Going via D gives (19, 15, 9, 3, 9, 10). Going via E gives (12, 11, 8, 14, 5, 9). Taking the minimum for each destination except C gives (11, 6, 0, 3, 5, 8). The outgoing lines are (B, B, -, D, E, B).

02. Ans: (c)

Sol: RIP uses distance vector routing RIP packets are sent using UDP OSPF doesn't use UDP or TCP and sends directly via IP OSPF operation is based on LSR

03. Ans: (a)

Sol: Perform AND operation Given IP address and net mask, and compare results with network number if it matches with network number, then forward packet through that interface. If not matched with any entry then use default route.

Ex: for (i)

128.96.171.92

```
AND 255.255.254.0
```

= 128 .96 .170 .0

Hence packet must be transferred through Interface 0. Sometimes result matches with multiple network number, if so use interface that has longest length subnet mask. So similarly for i : a ii : c iii : e iv: d

04. (i) Ans: (a)

Sol: 128.96.39.10 is one of the IP address in the same subnet, it uses interface 0

255.255.255.128. → 512 Subnet

 \rightarrow 126 Host

128.96.40.151 it uses R_4 as the next because this IP address is under default subnet number.

04. (ii) Ans: (d)

Sol: 128.96.40.12 uses R_2 as the next hop because it falls under 128.96.40.0 192.4.153.0 \rightarrow Uses R_3 as the next hop because it falls under 192.4.153.0

07. Ans: (b) Sol: Given $\Rightarrow M = \max \text{ burst} = 6 \text{ Mbps}$ $\rho = \text{const rate}$ = token arrive rate 1 Mbps C = 8 Mbps S = ? $S = \frac{C}{M - \rho} = \frac{8 \text{Mbits}}{(6 - 1) \text{Mbits/sec}}$ $= \frac{8}{5} \text{sec}$ = 1.6 sec

08. Ans: (c)

Sol: Given L = 1000 byte M = 50 million bytes/sec $\rho = 10$ million byte/sec C = 1 × 10⁶ bytes S = ? S = $\frac{C}{M-\rho} = \frac{1 \times 10^{6}}{50 \times 10^{6} - 10 \times 10^{6}} = \frac{1}{40}$ = 25 msec

09. **Ans : 1.1**

Sol: C= 1 MB M = 20 MB parsec Arrive rate = 10 MB per sec Actual file size = 12×10^6 bytes S = ? S = $\frac{C}{M-\rho} = \frac{1}{20-10}$

$$=\frac{1}{10 \sec} = 0.1 \sec^2$$

The computer runs with bursty rate for the duration of '5' sec. the amount of data outlet = equation (1)

 $= \frac{20MB}{5} \times 0.1 \text{sec}$ = 2 MB data is outletstep (1)Current file size = 12 MB = already outlet data with 'M' rate = 12 MB - 2 MBRemaining data = 10 MB This remaining data 10 MB goes as with constant rate ρ . $\rho \Rightarrow 10 \text{ MB} \rightarrow 1 \text{ sec}$ Remaining data 10 MB \rightarrow ? $\frac{10MB}{10MB} \times 1 = 1 \text{ sec} \dots \text{ step (2)}$ Total time taken = S1 + S2 = 0.1 + 1 = 1.1 sec

10. Ans: (d)

Sol: Data in 1st segment is from byte number 230 to byte number 289, that is 60 bytes As 1st is lost so, TCP will send ACK for the next in-order segment receiver is expecting. So it will be for 230.

11. Ans: (b)

SYNTAX:

int connect(int sockfd, const struct
sockaddr *addr,

socklen_t addrlen);

The **connect**() system call connects the socket referred to by the file

descriptor *sockfd* to the address specified by *addr*. The *addrlen* argument specifies the size of *addr*. The format of the address in *addr* is determined by the address space of the socket *sockfd*;

type If the socket sockfd is of **SOCK DGRAM**, then *addr* is the address to which datagrams are sent by default, and the only address from which datagrams are received. If the socket is of type SOCK STREAM or SOCK SEQPACKET, this call attempts to make a connection to the socket that is bound to the address specified by *addr*.

Generally, connection-based protocol sockets may successfully

connect() only once;

connectionless protocol sockets may use connect() multiple times to change their association. Connectionless sockets may dissolve the association by connecting to an address with the sa_family member of sockaddr set to AF_UNSPEC (supported on Linux since kernel 2.2).

So A process can successfully call connect function again for an already connected UDP socket for the above reason. Hence statement II is correct.

Statement I is wrong as the UDP is a connection less service and basically used for query and response purpose and there is no meaning of concurrent service (simultaneous)

12. Ans: 29.256

Sol: RTT = 30 msec $\infty = 0.9$ NRTT = 26 Basic algorithm = ∞ (IRTT)+(1- ∞) (NRRT) = 0.9 × 30 + (1-0.9) (26) = 29.6 msec 2nd round = 29.84 msec 3rd round = 29.256 msec

(08.Application Layer Protocols)

01. Ans: (b)

Sol: Refer page 100 for the concept of base 64 encoding

02. Ans: (c)

Sol: The concept to be followed.

Step 1: The client(browser) initiates a DNS query for remote server. It may be that they already have this server in their DNS cache, in which case the client may simply send a TCP SYN directly to the application server.

Step 2: The client will next send a connection request to the application server. This will be a TCP SYN packet, the first in the TCP three-way handshake.

Step 3: Next, after the TCP connection has been established, the client will request data from the server. In the web-based application, the client performs an HTTP GET.

09. Basics Of Wi-Fi

01. Ans: (b)

Sol: RTS and CTS mechanism is used for collision avoidance, not collision detection.

Both are in symmetric nature. Hence $IP = IP^{-1}$

02. Ans: (c)

Sol: 2 nodes

(b) Cipher Modes

- 03. Ans: (b)
- Sol: Bit error causes its impact on two blocks only (i, i+1).
- Ans: (c) as per concept **04**.
- 05. Ans: (b) as per concept
- Ans: (c) as per concept **06**.
- 07. Ans: (c) as per concept

(c) Key Management

08. Ans: (d)

ACE Engineering Publications Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata

Sol: Given n = 47, g = 3, x = 8n, g, g^x mod n 47, 3, 3⁸ mod 47

 $3^8 \mod 47 = 28$: (47, 3, <u>28</u>)

09. Ans: (b) **Sol:** Given y = 10, n = 47, g = 3.

:17:

- 11. Ans: (a) & (d)
- **Sol:** Property for good candidate

Choose 'n' in such a way that $n, \left(\frac{n-1}{2}\right)$

both should be prime.

(a) 7,
$$\frac{7-1}{2} = 3 \implies (7, 3)$$

(b) 33 is not prime

(c)
$$37, \frac{37-1}{2} = 18 \Rightarrow (37, 18)$$

(d) $47, \frac{47-1}{2} = \frac{46}{2} = 23 \Rightarrow (47, 23)$

 \therefore Option (a) & (d) is correct

12. Ans: (c)

Sol:

Session key = 191^{15} % 719 = 40

191 ¹⁵ mod 719	1	1	1	1
e = 15	1	531	326	403
d = 1	191	42	432	40

13. Ans: (b)

Sol: n = 7, g = 3, x = 2, y = 5

Chapter – 2 14. **Sol:** a = 1, b = 2**(a)** p = 7 q = 11 $n = p \times q$ $= 7 \times 11 = 77$ z = (p-1)(q-1)=(7-1)(11-1) $= 6 \times 10 = 60$ GCD(d, z) = 1GCD (d, 60) = 111 13 7 17 19 Five legal values for d is 7, 11, 13, 17, 19 **(b)** p = 13, q = 31, d = 7. Find e P = 13. q = 31. $n = p \times q$ z = (p-1)(q-1) $= 12 \times 30 = 360$ d = 7 GCD(d, z) = 1 $(e \times d) \mod z = 1$ $k_u = \{e, n\}$ $(e \times d) = 1 \mod Z$ $k_r = \{d, n\}$ Encryption $p^e \mod n = c$ Decryption $c^d \mod n = p$ $(e \times d) = 1 \mod 360$ $(e \times 360) = 1 \mod 360$ (multiple of 360 + 1) % 360 = 1 $360 \times 1 = 360 + 1 = 361\% 360 = 1$ i = 1 $e \times 7 = 361$; $e = \frac{361}{7} = fraction$ $360 \times 2 = 720 + 1 = 721\% \ 360 = 1$ i = 2 $\Rightarrow e \times 7 = 721$ $e = \frac{721}{7} = 103$

(c)
$$p = 5; q = 11; d = 27$$

 $p = 5$
 $q = 11$
 $n = 11 \times 5 = 55$
 $z = 4 \times 10 = 40$
 $(e \times d) = 1 \mod z$
 $(e \times 27) \% 40 = 1$

Multiple of 4 + 1

i = 1
$$40 \times 1 \Rightarrow (40 + 1) \% 40 = 1$$

e × 27 = 41, e = fraction

$$i = 2$$
 $40 \times 2 \implies (80 + 1) \% 40 = 1$
 $e \times 27 = 81, e = 3$

Encrypted "abcdefghij"

Р	P ^e mod n
	$P^3 \mod 55$
a = 1	$1^3 \mod 55 = 1$
b = 2	$8 \mod 55 = 8$
c = 3	$27 \mod 55 = 27$
d = 4	$64 \mod 55 = 9$
e = 5	$125 \mod 55 = 15$
f=6	$216 \mod 55 = 51$
g = 7	343 mod 55 = 13
h = 8	$512 \mod 55 = 17$
i = 9	$729 \mod 55 = 14$
j = 10	$1000 \mod 55 = 10$

15. Ans: (c)

				<i>,</i>	
Sol: $e = 5, p = 7, q = 17$	Q	<u>A</u>	<u> </u>	<u>B</u>	<u>e</u>
$Z = 6 \times 16 = 96$	_	0	15800	1	343
$(e \times d) = 1 \mod z = e = 5$	46	1	343	-461	277
$(e \times d)$ = multiple of 96 + 1	1	-461	277	462	66
i = 1 96 × 1 + 1 = 97% 96 = 1	4	462	66	-2309	13
$e \times d = 97; d = 97/5 = fraction$	5	-2309	13	12007	1

ACE Engineering Publications Hyderabad | Delhi | Bhopal | Pune | Bhubaneswar | Lucknow | Patna | Bengaluru | Chennai | Vijayawada | Vizag | Tirupati | Kukatpally | Kolkata

i = 2

$$i = 2$$

 $i = 2$
 $i = 3$
 $96 \times 2 = 192 + 1 = 193$
 $e \times d = 193$ fraction
 $i = 3$
 $96 \times 3 = 288 + 1 = 289$
 $e \times d = 289$ fraction
 $i = 4$
 $96 \times 4 = 384$
 $384 + 1 = 385$
 $e \times d = 385$
 $d = \frac{385}{5} = 77$

16. Ans: (d)
Sol:
$$A = 1, B = 2, C = 3, D = 4, E = 5, F = 6$$

 $M = {}^{\circ}F{}^{\circ}$
 $= 6$
Given $p = 7, q = 17$
 $n = 7 \times 17 = 119$
 $C = M^{e} \mod n$
 $= 6^{5} \mod 119 = 41$

17. Ans: (d)

Sol: p = 397, q = 401, e = 343, d =? $z = 396 \times 400 = 158400$ So, d = 12007 $Q = \frac{\phi(n)}{e}$ T = A - B * Q A = B B = T $R = \phi(n) \% e$ $\phi(n) =$ Extended Euclidean Algorithm $Q = \frac{\phi(n)}{e}$

18. Ans: (a)

Sol: encrypted p = 1314 $p^{e} \mod n$ e = 343 $n = 401 \times 397$ n = 159, 197 $1314^{343} \mod 159197$ $256 \quad 128 \quad 64 \quad 32 \quad 16 \quad 8 \quad 4 \quad 2 \quad 1$ $1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1$

1314³⁴³ mod 159197

1314 ³⁴³	1	0	1	0	1	0	1	1	1
d=1	1	134,626	59017	138690	97772	24844	175679	118532	84228
	1314	Х	19399	Х	429	Х	158670	56382	33677

Chapter – 3

19. Ans: (d)

Sol: Definition of Digital sign and PKC.