MECHANICAL ENGINEERING # **HEAT TRANSFER** **Volume - 1: Study Material with Classroom Practice Questions** # **Heat Transfer** ## Solutions for Volume - I_ Classroom Practice Questions ## 01. Ans: (b) **Sol:** Given data: $$\begin{split} T_{si} &= 600 ^{\circ} C; & T_{so} &= 20 ^{\circ} C; \\ k_{A} &= 20 \text{ W/mK}; & k_{C} &= 50 \text{ W/mK}; \\ L_{A} &= 0.30 \text{ m} & L_{B} &= 0.15 \text{ m}; \\ L_{C} &= 0.15 \text{ m}, & h &= 25 \text{ W/m}^{2} K \end{split}$$ #### Thermal circuit: ## Energy balance: Convective heat transfer at the wall surface = conductive heat transfer through the wall $$\frac{\frac{T_{\infty} - T_{si}}{\frac{1}{h}} = \frac{T_{si} - T_{so}}{\frac{L_{A}}{k_{A}} + \frac{L_{B}}{k_{B}} + \frac{L_{C}}{k_{C}}}$$ $$\frac{800 - 600}{\frac{1}{25}} = \frac{600 - 20}{\frac{0.30}{20} + \frac{0.15}{k_{B}} + \frac{0.15}{50}}$$ $$\Rightarrow k_{B} = 1.53 \text{ W/mK}$$ #### 02. Ans: (a) Sol: Given data: $$L_1 = L_2 = 0.01;$$ $k_1 = k_2 = 16.6 \text{ W/mK}$ #### Thermal circuit: $$R_1 = R_2 = \frac{L}{k} = \frac{0.01}{16.6} \frac{m^2 K}{W}$$ $$q_1 = \frac{T_{S1} - T_{S2}}{2R_1 + R_{constant}} = \frac{100}{2\left[\frac{0.01}{16.6}\right] + 15 \times 10^{-4}}$$ $$q = \frac{T_{C1} - T_{C2}}{R_{contact}}$$ $$T_{C1} - T_{C2} = 55.45$$ °C ## 03. Ans: (c) **Sol:** Given data: $$T_1 = 5$$ °C, $T_2 = 25$ °C, $k = 10 \text{ W/mK}, R_{contact} = 0.01 \text{ mK/W}$ $$\begin{split} q_{in} &= \frac{T_2 - T_1}{R_{contact} + R_{cond}} \\ &= \frac{25 - 5}{0.01 + \frac{\ell n \left(\frac{75}{25}\right)}{2\pi \times 10 \times 1}} = 727.67 \text{ W/m} \end{split}$$ $$q_{out} = \frac{T_2 - T_{\infty}}{\frac{1}{h_o A_o}}$$ $$= \frac{25 + 10}{\frac{1}{100 \times 2\pi \times 0.075 \times 1}} = 1649.33 \text{ W/m}$$ Heater Power = Total Heat Loss $= q_{in} + q_{out} = 2377 \text{ W/m}$ 04. Ans: (d) Sol: Given data: $$r_{\rm m} = 0.075 \text{ m}$$ $$T_1 = 100$$ °C, $$T_2 = 45$$ °C $$\frac{T_{m} - T_{1}}{T_{2} - T_{1}} = \frac{\frac{1}{r_{1}} - \frac{1}{r_{m}}}{\frac{1}{r_{1}} - \frac{1}{r_{2}}}$$ $$\frac{T_{m}-100}{45-100} = \frac{\frac{1}{0.05} - \frac{1}{0.075}}{\frac{1}{0.05} - \frac{1}{0.1}}$$ $$T_{\rm m} = 63.3 {\rm ^{\circ}C}$$ 05. Ans: (485 K) Sol: Given data: Volumetric heat generation rate $$q_g = 0.3 \text{ MW/m}^3$$ $$k = 25 \text{ W/mK};$$ $$T_{\infty} = 92^{\circ}C;$$ $$h_o = 500 \text{ W/m}^2 \text{K}$$ **Energy balance:** $$\begin{aligned} Q_{in} + Q_{gen} - Q_{out} &= Q_{stored} \\ Q_{gen} &= Q_{out} \end{aligned}$$ $$q_{\sigma}A'L = hA'(T_S - T_{\infty})$$ $$0.3 \times 10^6 \times 0.1 = 500 \times (T_S - 92)$$ $$\Rightarrow$$ T_S = 152°C $$T_{\text{max}} - T_{\text{S}} = \frac{q_{\text{g}}L^2}{2k}$$ $(q_g = heat generation per unit volume)$ Since $$T_{max} = T_s + \frac{q_g L^2}{2k}$$ $$T_{\text{max}} = 152 + \frac{0.3 \times 10^6 \times (0.1)^2}{2 \times 25}$$ $$T_{\text{max}} = 212^{\circ}\text{C} = 485 \text{ K}$$ 06. Ans: (b) **Sol:** Given data: $$q_g = 2.6 \times 10^6 \text{ W/m}^3$$ $$k = 45 \text{ W/m}^{\circ}\text{C}$$ $$L^{\infty}=0 \text{ oC}$$ $$h = 1200 \text{ W/m}^2 \text{°C}$$ Temperature difference between center line and surface of the sphere $$T_{\text{max}} - T_{\text{S}} = \frac{q_{\text{q}}R^2}{6k}$$ $$T_{\text{max}} = T_{\text{S}} + \frac{q_{\text{q}}R^2}{6k}$$ $$= 108.33 + \frac{2.6 \times 10^6 \times (0.15)^2}{6 \times 45}$$ $$T_{\text{max}} = 325$$ °C ## **Energy balance:** $$\begin{aligned} Q_{in} + Q_{gen} - Q_{out} &= Q_{stored} \\ Q_{gen} &= Q_{out} \end{aligned}$$ $$q_{\rm g}\,\frac{4}{3}\pi R^3 = h4\pi R^2 \big(T_{\scriptscriptstyle S}-T_{\scriptscriptstyle \infty}\big)$$ $$T_{\rm S} - T_{\infty} = \frac{q_{\rm g}R}{3h}$$ $$T_{\rm S} = T_{\infty} + \frac{q_{\rm g}R}{3h}$$ $$T_S = 0 + \frac{2.6 \times 10^6 \times 0.15}{3 \times 1200}$$ $$T_S = 108.33$$ °C #### 07. Ans: (b) #### Sol: Given data: $$T_1 = 500 \text{ K}, \qquad H = 1.5 \text{ m}$$ $T_2 = 350 \text{ K}, \qquad W = 0.6 \text{ m}$ L = 0.15 m $$T_{avg} = \frac{T_1 + T_2}{2} = \frac{500 + 350}{2} = 425$$ °C $$k_T = k_o[1 + \beta T]$$ $$k_{avg} = k_o[1 + \beta T_{avg}]$$ $$k_{avg} = 25[1+(8.7\times10^{-4})\times425]$$ $$k_{avg} = 34.24 \ W/mK$$ $$Q = \frac{\frac{T_1 - T_2}{L}}{k_{avg}A}$$ $$=\frac{\frac{500-350}{0.15}}{34.24\times1.5\times0.6}=30.816\times10^3=\omega$$ $$Q = 30.816 \text{ kW}$$ ## 08. Ans: (c) Sol: Since Given data: $$T_1 = 400 \text{ K}, \qquad T_2 = 600 \text{ K}$$ $$D = ax,$$ $a = 0.25$ $$x_1 = 0.05 \text{m}, \qquad x_2 = 0.25 \text{ m}$$ $$A = \frac{\pi}{4}D^2 = \frac{\pi}{4}a^2x^2$$ $$Q = -kA \frac{dT}{dx}$$ $$Q = -k\frac{\pi}{4}a^2x^2\frac{dT}{dx}$$ $$Q\frac{dx}{x^2} = -\frac{\pi ka^2}{4}dT$$ $$Q \int_{x_1}^{x_2} \frac{dx}{x^2} = \frac{-\pi ka^2}{4} \int_{T_1}^{T_2} dT$$ $$Q \left[\frac{-1}{x} \right]_{x_1}^{x_2} = \frac{-\pi k a^2}{4} (T_2 - T_1)$$ $$Q \left[\frac{-1}{x_2} + \frac{1}{x_1} \right] = \frac{-\pi ka^2}{4} (T_2 - T_1)$$ $$Q = \frac{-\pi ka^{2}(T_{2} - T_{1})}{4\left[\frac{1}{x_{1}} - \frac{1}{x_{2}}\right]}$$ $$=\frac{-\pi \times 3.46 \times (0.25)^2 (600 - 400)}{4 \left[\frac{1}{0.05} - \frac{1}{0.25}\right]}$$ Q = -2.12 W (- sign indicates the direction of heat transfer) #### 09. Ans: (d) **Sol:** Given data: Thermal conductivity of insulation $(k_{in}) = 0.5 \text{ W/mK}$ Heat transfer coefficient of surrounding air $(h_0) = 20 \text{ W/m}^2\text{K}$ Thickness of insulation for maximum heat transfer = $$r_c - r = \frac{k_{in}}{h_o} - r$$ = $\frac{0.5}{20} - 0.01 = 15 \text{ mm}$ ## 10. Ans: (a) Sol: Given data: Thermal conductivity of insulation $(k_{in}) = 0.1 \text{ W/mK}$ Heat transfer coefficient of surrounding air $(h_o) = 10 \text{ W/m}^2 \text{K}$ Radius (r) = 1.5 cm, Critical radius of insulation (r_c) = $\frac{k_{in}}{h_o}$ $$=\frac{0.1}{10}=0.01$$ m $=1$ cm $$r > r_c$$:. Adding the insulation will always reduce the heat transfer rate. #### 11. Ans: (c) **Sol:** Given data: Radius (r) = 1 mm, Thermal conductivity of insulation $(k_{in}) = 0.175 \text{ W/mK}$ Heat transfer coefficient of surrounding air $(h_0) = 125 \text{ W/m}^2\text{K}$ Thickness = $0.2 \text{ mm} = r_{\text{new}} - r_{\text{new}}$ $$r_{new} = 1.2 \text{ mm}$$ Critical radius of insulation $(r_c) = \frac{k_{in}}{h_o}$ $$=\frac{0.175}{125}$$ = 1.4 mm $$r_{\text{new}} < r_{\text{c}}$$:. Addition of further insulation, heat transfer rate increases first then decreases. ## 12. Ans: (b) Sol: Given data: Thermal conductivity of insulation $(k_{in}) = 0.4 \text{ W/mK}$ Heat transfer coefficient of surrounding air $(h_o) = 10 \text{ W/m}^2 \text{K}$ Critical radius of insulation for the $2k_{in}$ 2×0.04 sphere $$(r_c) = \frac{2k_{in}}{h_o} = \frac{2 \times 0.04}{10} = 8 \text{ mm}$$ Critical diameter $(d_c) = 2r_c = 16 \text{ mm}$ #### 13. Ans: (b) Sol: Volumetric heat generation rate $$(q_g) = 1000 \text{ W/m}^3$$ $$T_x = a(L^2 - x^2) + b$$ $$T_{x=0.05} = 10 (10.05^2 - 0.05^2) + 30$$ $$T_s = 30$$ °C $$T_{\infty} = 20^{\circ}C$$ $$\frac{\partial \mathbf{T}}{\partial \mathbf{x}} = \mathbf{a} \big(0 - 2\mathbf{x} \big)$$ $$\frac{\partial^2 \mathbf{T}}{\partial \mathbf{x}^2} = -2\mathbf{a} = -2 \times 10 = -20$$ 1-D heat conduction equation with internal heat generation: $$\frac{\partial^2 T}{\partial x^2} + \frac{q_g}{k} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$$ $$-20 + \frac{1000}{K} = 0$$ (for steady state, $\frac{\partial T}{\partial t} = 0$) $$\frac{1000}{k} = 20$$ $$k = 50 \text{ W/mK}$$ #### **Energy balance:** $$-\left.k\frac{\partial T}{\partial x}\right|_{x=+0.05m} = h\big[T_S-T_{_{\!\infty}}\big]$$ $$-50[a \times (-2x)]_{x=0.05} = h[30-20]$$ $$-50[10(-2 \times 0.05)] = h \times 10$$ $$\Rightarrow$$ $$h = 5 \text{ W/m}^2 \text{K}$$ #### 14. Ans: (c) Sol: Given data: $$\Delta V = 10 \text{ V}$$ $$\rho = 70 \times 10^{-8} \text{m}$$ $$D = 3.2 \times 10^{-3} \text{m},$$ $$r = 1.6 \times 10^{-3} \text{m}$$ $$T_s = 93$$ °C, $$T = 22.5 \text{ W/mK}$$. $$L = 0.3 \text{ m}$$ Resistance $$(R) = \frac{\rho L}{A_c} = \frac{70 \times 10^{-8} \times (0.3)}{\frac{\pi}{4} (3.2 \times 10^{-3})^2} = 0.02611\Omega$$ $$I = \frac{\Delta V}{R} = \frac{10}{0.02511} = 382.97 \text{ Amp}$$ $$Q_g = \Delta VI = 10 \times 383.97$$ $$Q_g = 3829.75 \text{ W}$$ $$q_g = \frac{Q_g}{\text{volume}} = 1.587 \times 10^9 \,\text{W/m}^3$$ Temperature difference between center line and surface of the cylindrical wire $$T_{\text{max}} - T_{\text{S}} = \frac{q_{\text{g}}R^2}{4k} = 138.14$$ °C 15. Ans: (d) **Sol:** $$\frac{K_1}{K_2} = \frac{1}{2}, \frac{r_1}{r_3} = 0.8$$ $$r_2 - r_1 = r_3 - r_2$$ Due to steady state H.T. $$Q_1 = Q_2$$ $$\frac{4\pi K_1 r_1 r_2 (\Delta T_1)}{(r_2 - r_1)} = \frac{4\pi K_2 r_2 r_3 (\Delta T_2)}{(r_3 - r_2)}$$ $$\frac{\Delta T_1}{\Delta T_2} = \frac{K_2 r_3}{K_1 r_1} = \frac{2}{0.8} = 2.5$$ #### **16.** Ans: (c) Sol: $$Q_1 = Q_2 = Q$$ $R_{eq} = R_1 + R_2$ $\frac{2\delta}{k_{eq}A} = \frac{\delta}{k_1A} + \frac{\delta}{k_2A}$ Q_2 $\frac{2\delta}{k_{eq}} = \frac{\delta}{k_1} + \frac{\delta}{k_2}$ Q_1 Q_2 Q_2 Q_3 Q_4 Q_4 Q_5 Q_6 Q_6 Q_6 Q_8 Q_9 ## 17. Ans: (b) **Sol:** $r_2 < r_c$, addition of insulation up to r_C will increase the H.T. by Convection largely and reduces the H.T. by Conduction by a small amount and hence the net heat transfer increases and therefore current carrying capacity increases. #### **18.** Ans: (d) Sol: A good conductor of heat cannot ensure that it will be a good conductor of electricity. For example, Diamond is a very good conductor of heat but it is not a good conductor of electricity. #### **19.** Ans: (a) Sol: A thermal conductivity of diamond is approximately 2300 W/mK. It has one of the highest thermal conductivities among all materials. It is because diamond has highly ordered crystalline structure. ## **Conventional Practice Solutions** ## 01. Sol: Heat generation is only in wall A. Heat conduction equation 1-D $$\frac{d^2T}{dx^2} = -\frac{\dot{q}}{k}$$ Integrate with respect to x $$\frac{dT}{dx} = -\frac{\dot{q}}{k}.x + C_1$$ Integrate with respect to x $$T = \frac{-\dot{q}}{k} \cdot \frac{x^2}{2} + C_1 x + C_2 - (1)$$ Boundary
condition, at x = 0, $T = T_B$ $$T_B = 0 + 0 + C_2$$ $$C_2 = T_B$$ At the interface AB: $$-k_{A} \left(\frac{dT}{dx}\right)_{A} = -k_{B} \left(\frac{dT}{dx}\right)_{B}$$ $$230(T_{B} - 10)$$ $$-\dot{q}.x + C_1.k_A = \frac{230(T_B - 100)}{0.12}$$ Since 1995 [at interface AB, x = 0] $$C_1 \times 24 = \frac{230(T_B - 100)}{0.12}$$ $$C_1 = 79.86(T_B-100)$$ -----(2) At $$x = 0.1m$$, $T = T_C$ $$T_{\rm C} = \frac{-\dot{q}}{k_{\rm A}} \cdot \frac{0.1^2}{2} + C_1 \times 0.1 + T_{\rm B}$$ $$T_{C} = \frac{-2.5 \times 10^{5}}{24} \times \frac{0.1^{2}}{2} + 0.1 \times 79.86 (T_{B} - 100) + T_{B}$$ $$T_C = -850.68 + 8.983 T_B - - - (3)$$ Total heat generation inside the wall A = Heat conducted through wall B + Heat conducted through wall C $$2.5 \times 10^{5} \times 0.1 \times A = \frac{A \times 230(T_{B} - 100)}{0.12} + \frac{(T_{C} - 150) \times 200 \times A}{0.15}$$ A = perpendicular area in the direction of heat $$34.5T_B + 24T_C = 7500$$ -----(4) From equation number (3) and (4) $$T_B = 111.624$$ °C $$T_C = 152.04$$ °C At maximum temperature, $\frac{dT}{dx} = 0$ $$-\frac{\dot{q}}{k}.x + C_1 = 0$$ and from equation (2) $$C_1 = 79.28(T_B - 100)$$ $$C_1 = 928.292 \text{ °C/m}$$ $$x = \frac{C_1 \times k_A}{\dot{q}}$$ $$x = \frac{928.292 \times 24}{2.5 \times 10^5} = 0.089116 \text{ m}$$ at $$x = 0.089116$$ m, $$T = T_{max}$$ From eq. (1) $$T_{\text{max}} = \frac{-\dot{q}}{k_{\Delta}} \cdot \frac{x^2}{2} + C_1 x + C_2$$ $$T_{\text{max}} = \frac{-2.5 \times 10^5}{24} \times \frac{0.0891^2}{2} + 928.29 \times 0.0891 + 111.624$$ $$T_{\text{max}} = 152.9868$$ °C % of total heat conducted by wall B Heat conduction through wall B Total heat generation in wall A $$= \frac{\left(\frac{-k_B.A(T_B - 100)}{L_B}\right)}{2.5 \times 10^5 \times A \times L_A}$$ $$= \frac{\left(\frac{230(111.624 - 100)}{0.12}\right)}{2.5 \times 10^5 \times 0.1}$$ $$= \frac{22279.33}{25000} = 89.11\%$$ Hence, 89.11% of the total heat transferred through wall B and 10.89% of the total heat transferred through wall C. ## Chapter - 2 **Transient Heat Conduction** 01. Ans: (b) Sol: Given data: $$D = 1.2 \text{ cm},$$ $$R = 0.6 \text{ cm}$$ $$T_0 = 900^{\circ}C$$, $$T_{\infty} = 30^{\circ} C$$ $$h = 125 \text{ W/m}^2 \text{°C}, \qquad c_p = 480 \text{ J/kg}$$ $$c_{\rm p} = 480 \, \text{J/kg}$$ $$L_c = \frac{R}{3} = 0.2 \,\text{cm}$$, $T = 850 \,^{\circ}\text{C}$, $$T = 850^{\circ}C,$$ $$\therefore \quad Bi = \frac{hL_c}{k} < 0.1$$ Lumped method can be applied. $$\ell n \left[\frac{T - T_{\infty}}{T_0 - T_{\infty}} \right] = \frac{-ht}{\rho c_p L_c}$$ $$\Rightarrow$$ $$t = 3.67 sec$$ 02. Ans: (c) Sol: Given data: $$\rho = 8500 \text{ kg/m}^3$$, $c_p = 320 \text{ J/kgK}$ $$h = 65 \text{ W/m}^2 \text{K}, \quad k = 35 \text{ W/mK}$$ $$d = 1.2 \text{ mm}$$ $$\frac{T_{o} - T}{T_{o} - T_{m}} = 0.99$$ $$\therefore \quad \text{Bi} = \frac{\text{hL}_c}{\text{k}} < 0.1$$ Lumped method can be applied. $$\frac{T_o - T}{T_o - T_m} = 1 - e^{\frac{-ht}{\rho c_p L_c}}$$ $$0.99 = 1 - e^{\frac{-ht}{\rho c_p L_c}}$$ $$e^{\frac{-ht}{\rho c_p L_c}} = 1 - 0.99 = 0.01$$ $$\frac{-ht}{\rho c_p L_c} = \ell n (0.01)$$ $$t = \frac{\rho c_p L_c}{h} \ln(0.01)$$ $$\Rightarrow$$ t = 38.54 sec **03.** Ans: (d) Sol: Given data: $$T_0 = 25^{\circ}C;$$ $$T_{\infty} = 600^{\circ} C$$ $$Q_{act} = 0.75 Q_{max}$$ $$L_c = \frac{V}{A_c} = \frac{HWL}{2HU} = \frac{W}{2} = \frac{0.05}{2} = 0.025$$ $$m_{c}[T-T_{o}] = 0.75[m_{c}(T_{\infty}-T_{o})]$$ $$T - 25 = 0.75 (600-25)$$ Since $$T - 25 = 0.75 (600-$$ $\Rightarrow T = 456.25^{\circ}C$ $$Bi = \frac{hL_c}{k} = \frac{100 \times 0.025}{231} = < 0.1$$ $$\therefore \quad \text{Bi} = \frac{\text{hL}_c}{\text{k}} < 0.1$$ Lumped method can be applied. $$\ell n \left[\frac{T - T_{\infty}}{T_{o} - T_{\infty}} \right] = \frac{-ht}{\rho c_{p} L_{c}}$$ $$\Rightarrow$$ t = 967.34 sec #### 04. Ans: (b) **Sol:** According to lumped capacity analysis: $$\ell n \! \left[\frac{T - T_{_{\!\infty}}}{T_{_{\!o}} - T_{_{\!\infty}}} \right] \! = \! \frac{-t}{\tau^*} \label{eq:loss_total_loss}$$ $$\ell n \left[\frac{\frac{T_o + T_\infty}{2} - T_\infty}{\frac{T_o - T_\infty}{T_o - T_\infty}} \right] = \frac{-t}{\tau^*}$$ $$\ell n \left[\left(\frac{T_o + T_\infty}{2} \right) \frac{1}{T_o - T_\infty} \right] = \frac{-t}{\tau^*}$$ $$\ell n \left(\frac{1}{2}\right) = \frac{-t}{\tau^*}$$ $$\ell n(2) = \frac{-t}{\tau^*}$$ $$\Rightarrow \ t = \tau * \ell n(2)$$ #### 05. Ans: (c) Sol: Given data: $$m = 500 g = 0.5 kg;$$ $$T_o = 530^{\circ}C; \quad T = 430^{\circ}C; \quad T_{\infty} = 30^{\circ}C$$ According to lumped capacity analysis $$\ell n \left[\frac{T - T_{\infty}}{T_{\alpha} - T_{\infty}} \right] = \frac{-t}{\tau^*},$$ $$\ell n \left[\frac{430 - 30}{530 - 30} \right] = \frac{-10}{\tau^*} \qquad \dots \dots (1)$$ $$\ell n \frac{400}{500} = \frac{-10}{\tau^*}$$ $$\Rightarrow$$ $\tau^* = 44.81 \text{ s}$ Temperature after next 10 s, $$T_o = 430^{\circ}C$$; $t = 10$ sec; $$\ell n \left[\frac{T - T_{\infty}}{T_{0} - T_{\infty}} \right] = \frac{-t}{\tau^{*}}$$ $$\frac{T - 30}{430 - 30} = e^{\frac{-10}{\tau^*}} \qquad \dots (2)$$ $$T = 30 + 400 \times e^{-10/44.81}$$ $$\Rightarrow T = 350^{\circ}C$$ **Ans: 12.05 K/min** Sol: Given data: $$D = 0.05 \text{ m}; \quad T_o = 900^{\circ}\text{C}, \quad T_{\infty} = 30^{\circ}\text{C}$$ $$\rho = \frac{m}{V}$$ $$m = \rho V = \rho \frac{4}{3} \pi R^3$$ $$= 7800 \times \frac{4}{3} \times \pi (0.025)^3 = 0.510 \,\mathrm{kg}$$ ## **Energy balance:** Decrease in internal energy = Convective heat transfer from the surface $$-mc\frac{dT}{dt} = hA_s(T_o - T_\infty)$$ $$0.510 \times 2000 \times \frac{dT}{dt} = 30 \times 4\pi (0.025)^2 \times (900 - 30)$$ Since $$\frac{dT}{1995} = 0.2 \text{ K/sec}$$ $$\frac{dT}{dt} = 12.05 \,\mathrm{K/min}$$ 07. Ans: (c) **Sol:** Given data: $$T_0 = 350$$ °C, $$T_{\infty} = 30^{\circ}C$$ $$T = 100$$ °C $$c_p = 900 \text{ J/kg.K},$$ $$\rho = 2700 \text{ kg/m}^3$$. $$k = 205 \text{ W/mK}$$. $$h = 60 \text{ W/m}^2 \text{K}$$ $$m = \rho V = \rho \times \frac{4}{3} \pi R^3$$ $$L_{\rm C} = \frac{R}{3} = 0.02698 \,\mathrm{m}$$ $$R = 0.0809 \text{ m}$$ $$\therefore \quad \text{Bi} = \frac{\text{hL}_c}{\text{k}} < 0.1$$ Lumped method can be applied. $$\ell n \left[\frac{T - T_{\infty}}{T_{o} - T_{\infty}} \right] = \frac{-ht}{\rho c_{p} L_{C}}$$ $$\ell \ln \left[\frac{100 - 30}{350 - 30} \right] = \frac{-60 \times t}{2700 \times 900 \times 0.02698}$$ $$\Rightarrow$$ t = 1660 sec 08. Ans: (a) Sol: Temperature distribution for the lumped heat capacity analysis $$\frac{(T - T_{\infty})}{T_{i} - T_{\infty}} = \exp \left[\frac{-hA}{\rho Vc} \tau \right]$$ If $$\frac{hA\tau}{\rho Vc} \rightarrow 0$$, $$(T-T_{\infty}) \rightarrow (T_i-T_{\infty})$$ For the rapid response of the temperature measuring equipment, the value of should be as small as possible. 09. Ans: (a) Sol: In lumped analysis temp gradient is negligible and B_i is very small due high "k". **10.** Ans: (b) Sol: For the lumped heat capacity analysis, internal conductive resistance is negligible compared to external convective resistance. Biot number (Bi) < 0.1 $$\frac{R_{conduction}}{R_{convection}} < 0.1$$ R_{conduction} <<< R_{convection} Ans: (d) 11. Since Sol: For the lumped heat capacity analysis, the temperature distribution is given by $$\frac{(T - T_{\infty})}{T_{i} - T_{\infty}} = exp \left[\frac{-hA}{\rho Vc} \tau \right],$$ temperature distribution Hence is exponential. ## Chapter - 3 **Extended Surfaces - FINS** 01. Ans: (a) **Sol:** Given that: $$D = 0.01 \text{ m}$$ $$h = 10 \text{ W/m}^2 \text{K}$$ $$T_{\infty} = 25^{\circ}C$$ $$k = 379 \text{ W/mK},$$ $$T_0 = 650^{\circ} C$$ $$T_0 = 650^{\circ}C$$ $T_{\infty} = 25^{\circ}C$ $T_{\infty} = 25^{\circ}C$ For very long fin: $$Q_{Fin} = kA_{c}m\theta_{o} = k\frac{\pi}{4}D^{2} \times \sqrt{\frac{4h}{kD}} \times (T_{o} - T_{\infty})$$ $$Q_{Fin} = 379 \times \frac{\pi}{4} \times (0.01)^{2} \times \sqrt{\frac{4 \times 10}{379 \times 0.01}} \times (650 - 25)$$ $$Q_{Fin} = 60.43$$ Power in put = $2Q_{Fin}$ = 120.9 W 02. Ans: (a) Sol: Given data: $$k = 237 \text{ W/mK},$$ $$h = 12 \text{ w/m}^2 \text{K},$$ $$d = 4 \text{ mm},$$ $$L = 10 \text{ cm},$$ $$mL = \sqrt{\frac{4h}{kd}} \ L$$ $$= \sqrt{\frac{4 \times 12}{237 \times 4 \times 10^{-3}}} \times 0.1 = 0.71156$$ $$\% \, error = \frac{Q_{infinite} - Q_{insulated}}{Q_{insulated}}$$ $$=\frac{kA_{c}m\theta_{o}-kA_{c}m\theta_{o}\tanh(mL)}{kA_{c}m\theta_{o}\tanh(mL)}$$ $$\% \operatorname{error} = \frac{1 - \tanh(mL)}{\tanh(mL)}$$ $$= \frac{1}{\tanh(mL)} - 1 = 63.48\%$$ 03. Ans: (c) Sol: Given data: $$D = 5 \text{ mm}, I$$ $$L = 50 \text{ mm}, \quad \eta = 0.65$$ $$\frac{\in}{\eta} = \frac{Q_{\text{Fin}}}{Q_{\text{without fin}}} \times \frac{Q_{\text{max}}}{Q_{\text{Fin}}}$$ $$\frac{\in}{\eta} = \frac{Q_{max}}{Q_{without\,fin}}$$ $$=\frac{hA_s(T_o-T_{\infty})}{hA_c(T_o-T_{\infty})}$$ Surface area $(A_s) = \pi DL$ Cross-sectional area $(A_c) = \frac{\pi}{4}D^2$ $$\frac{\epsilon}{\eta} = \frac{\pi DL}{\pi D^2}$$ $$\frac{\epsilon}{\eta} = 4 \left(\frac{L}{D} \right)$$ $$\frac{\epsilon}{0.65} = 4 \left(\frac{50}{5} \right)$$ 04. Ans: 420% **Sol:** Heat transfer rate for very long fin: $$Q = kA_c m\theta_o$$ $$= \sqrt{hpkA_c} \ \theta_o = \sqrt{h \times \pi D \times k \times \frac{\pi}{4}D^2} \ \theta_o$$ $$O \propto D^3/2$$ $$\frac{Q_2}{Q_1} = \frac{(D_2)^{3/2}}{(D_1)^{3/2}} = \frac{(3D_1)^{3/2}}{(D_1)^{3/2}} = 5.1962$$ % increase in Heat Transfer = $$\frac{Q_2 - Q_1}{Q_1}$$ = $\frac{Q_2}{Q_1} - 1$ = $5.1962 - 1$ = $4.19 \approx 420 \%$ **05.** Ans: (c) Sol: Given data: $$k_A = 70 \text{ W/mK},$$ $$x_A = 0.15 \text{ m},$$ $$x_B = 0.075 \text{ m}$$ Temperature variation for long fin: $$\frac{T_o - T_\infty}{T - T_\infty} = e^{mx}$$ $$m = \sqrt{\frac{ph}{kA_c}} = \sqrt{\frac{4h}{kD}}$$ $m \propto \sqrt{\frac{1}{k}}$ (for the same diameter and same environment) For the same temperatures $$m_A x_A = m_B x_B$$ $$\frac{x_2}{x_1} = \frac{m_1}{m_2} = \sqrt{\frac{k_B}{k_A}}$$ $$\frac{k_{\rm B}}{k_{\rm A}} = \left(\frac{x_{\rm B}}{x_{\rm A}}\right)^2$$
$$\frac{k_B}{70} = \left(\frac{0.075}{0.15}\right)^2$$ $$\Rightarrow k_B = 17.5 \text{ W/mK}$$ **06.** Ans: (d) Sol: Given data: $$a = 5 \times 10^{-3} \text{ m} = 5 \text{ mm}$$ $$T_0 = 400$$ °C, $$T_{\infty} = 50^{\circ}C$$ $$k = 54 \text{ W/mK},$$ $$L = 0.08 \text{ m},$$ $$h = 90 \text{ W/m}^2 \text{K},$$ $$\frac{P}{A_C} = \frac{3a}{\sqrt{\frac{3}{4}a^2}} = \frac{4\sqrt{3}}{a}$$ $$m = \sqrt{\frac{hP}{kA_c}} = \sqrt{\frac{4\sqrt{3}h}{ka}}$$ $$m = \sqrt{\frac{4\sqrt{3} \times 90}{54 \times 5 \times 10^{-3}}} = 48.05$$ $$mL = 3.844$$ Since $$L_c = L + \frac{A_c}{P} = 0.08 + \frac{a}{4\sqrt{3}}$$ $$= 0.08 + \frac{5 \times 10^{-3}}{4\sqrt{3}}$$ $$= 0.08072 \text{ m}$$ Heat transfer rate from the fin: $$Q_{Fin} = kA_c m\theta_o tanh(mL_c)$$ $$= 54 \times \left(\frac{\sqrt{3}}{4} \times 0.005^{2}\right) \times 48.05 \times (400 - 50)$$ $$\times \tanh(48.05 \times 0.08072)$$ $$Q_{Fin} = 9.82 \text{ W}$$ #### 07. Ans: (c) Sol: Given data: $$k = 30 \text{ W/mK},$$ $D = 0.01 \text{ m},$ $$L = 0.05 \text{ m}, T_{\infty} = 65^{\circ}\text{C},$$ $$h = 50 \text{ W/m}^2 \text{K}, \qquad T_0 = 98^{\circ} \text{C}$$ $$mL = \sqrt{\frac{4h}{kD}}L = \sqrt{\frac{4 \times 50}{30 \times 0.01}} \times 0.05 = 1.2909$$ Temperature variation for insulated fin tip $$\frac{T - T_{\infty}}{T_{o} - T_{\infty}} = \frac{\cosh(mL - x)}{\cosh mL}$$ $$x = L$$, $T = T_L$ $$\frac{T_{L} - T_{\infty}}{T_{o} - T_{\infty}} = \frac{1}{\cosh mL}$$ $$T_{L} = T_{\infty} + \frac{T_{o} - T_{\infty}}{\cosh(mL)}$$ $$T_L = 65 + \frac{98 - 65}{\cosh(1.29)}$$ $$T_L = 81.87$$ °C Ans: (b) **08.** Sol: $$\frac{h}{mk}$$ < 1 $$\frac{h}{\sqrt{\frac{ph}{kA_c}} \times k} < 1$$ $$\sqrt{\frac{hA_c}{pk}} < 1$$ $$\sqrt{\frac{pk}{hA_c}} > 1$$ Effectiveness $(\in) > 1$ Using the fin will increase the heat transfer rate because effectiveness of the fin is greater than unity. 09. Ans: (a) Sol: Given data: $$k = 200 \text{ W/m}^{\circ}\text{C}, \ h = 15 \text{ W/m}^{2}^{\circ}\text{C}, \ L = 1 \text{ cm}$$ Cross-sectional area of fin (A_c) $$= 0.5 \times 0.5 \text{ mm}^2$$ $$T_o = 80$$ °C, $T_{\infty} = 40$ °C $$m = \sqrt{\frac{ph}{kA_c}}$$ $$=\sqrt{\frac{4\times0.0005\times15}{200\times0.0005\times0.0005}}=24.49$$ $$mL = 24.49 \times 0.01 = 0.2449$$ $$tanh(mL) = 0.240$$ Heat transfer rate from fin with insulated tip $$Q_{Fin} = kA_c m\theta_o \tanh(mL)$$ $$=200\times(0.5\times10^{-3})^2\times24.5\times(80-40)\times0.240$$ $$Q_{Fin} = 0.01176$$ No.of fin = $$\frac{Q_{\text{total}}}{Q_{\text{Fin}}} = \frac{1}{0.01176} = 85$$ Ans: 191.5 W/mK 10. Sol: Given data: Since $$T_x = 150^{\circ}C$$ $$T_{x+15cm} = 95^{\circ}C$$ $$T_{\infty} = 30^{\circ}C$$ $$D = 25 \text{ mm}$$. $$h = 20 \text{ W/m}^2 \circ \text{C}$$ Temperature variation for long fin $$\frac{T - T_{\infty}}{T_{o} - T_{\infty}} = e^{-mx}$$ $$\frac{150 - 30}{T_{o} - 30} = e^{-mx} \dots (1)$$ $$\frac{95 - 30}{T_{o} - 30} = e^{-m(x+15)} \dots (2)$$ From equation (1) and (2) we get $$\ell n \left[\frac{150 - 30}{95 - 30} \right] = m\Delta x$$ $$\ell n \left[\frac{150 - 30}{95 - 30} \right] = \sqrt{\frac{4h}{Dk}} \times 0.15$$ $$\Rightarrow \qquad k = 191.5 \text{ W/mK}$$ #### 11. Ans: (d) Sol: Fins are always provided at the side where heat transfer coefficient is lowest, the material of the fin should have high thermal conductivity, for high heat transfer to weight ratio, the parabolic shape of fin is preferable and fins must be provide vertical in case of stationary bodies and parallel to the direction of movement in case moving fins. #### 12. Ans: (c) **Sol:** Effectiveness of very long fin is given by $$\varepsilon = \sqrt{\frac{pk}{hA_c}}$$ ## 13. Ans: (d) **Sol:** Fins are always provided at the side where heat transfer coefficient is lowest, the material of the fin should have high thermal conductivity, for high heat transfer to weight ratio the parabolic shape of fin is preferable and fins must be provide vertical in case of stationary bodies and parallel to the direction of movement in case moving fins. #### 14. Ans: (b) Sol: Effectiveness of the fin is always highest when it is provided at the lower heat transfer coefficient side whether it is cold or hot side because the effectiveness is inversely proportional to the heat transfer coefficient and temperature of fin is varying along the length of the fin. #### **Conventional Practice Solutions** 01. Sol: Given: Length of fin (l) = 30 cm = 0.3 m Width of fin (b) = 30 cm = 0.3 m Thickness (t) = 2 mm = 0.002 m C/s area of fin $A_{c/s}$ = 0.3 ×0.002 = 6×10^{-4} m², Perimeter of the fin P = 0.604 m Thermal conductivity (k)= 204 W/mK Ambient air temperature t_a =30°C Base temperature t_b =300°C Convection heat transfer coefficient $$(h) = 15 \text{ W/m}^2 \text{K}$$ As the tip is not insulated at end, it looses heat from end also, hence the temperature variation for, heat dissipation from a fin loosing heat at tip also is given by $$\frac{\theta}{\theta_0} = \frac{t - t_a}{t_b - t_a}$$ $$= \frac{cosh[m(l - x)] + \frac{h}{km}[sinh m(l - x)]}{cosh(mL) + \frac{h}{km}[sinh(ml)]}$$ From the above equation, for any 'x' from the base, we can find the temperature't'. $$\mathbf{m} = \sqrt{\frac{hp}{kA_{C/s}}} = \sqrt{\frac{15 \times 0.604}{204 \times 6 \times 10^{-4}}}$$ $$m = 8.603 \text{ m}^{-1}$$ $$\begin{split} \frac{t-30}{300-30} &= \frac{\cosh[8.603(0.3-0.3)] + \frac{15}{204 \times 8.603}[\sinh 8.603(0.3-0.3)]}{\cosh(8.603 \times 0.3) + \frac{15}{204 \times 8.603}[\sinh(8.603 \times 0.3)]} \\ &= \frac{\cosh(0) + 8.547 \times 10^{-3} \times \sinh(0)}{\cosh(2.5809) + [8.547 \times 10^{-3} \times \sinh(2.5809)]} \\ &= \frac{1}{6.6423 + 0.0561} \\ \frac{t-30}{270} &= 0.149 \end{split}$$ t = 70.307°C corresponding to l = 30 cm is Rate of heat transfer $$= \sqrt{\text{PhkA}_{cs}} \left(t_b - t_a \right) \frac{\tanh(m\ell) + \frac{h}{km}}{1 + \frac{h}{km}} \tanh(m\ell)$$ $$\frac{h}{km} = \frac{15}{204 \times 8.603} = 8.547 \times 10^{-3}$$ $$\tanh(ml) = \tanh(8.603 \times 0.3) = 0.99$$ $$= \sqrt{0.604 \times 15 \times 204 \times 0.0006} \left(300 - 30 \right) \left(\frac{0.99 + (8.547 \times 10^{-3})}{1 + (8.547 \times 10^{-3})0.99} \right)$$ $$= 281.53 \text{ W}$$ (c) Fin efficiency: $\eta_{\text{fin}} = \frac{\text{Actual heat transferred by the fin}\left(Q_{\text{fin}}\right)}{\text{Max heat that would be transferred if whole}}$ surface of the fin is ma int ained at the base temperature (Q_{max}) $$\begin{split} \eta_{\rm fin} &= \frac{Q_{\rm fin}}{h P \ell(t_b - t_a)} \\ \eta_{\rm fin} &= \frac{281.53}{15 \times 0.604 \times 0.3(300 - 30)} \\ \eta_{\rm fin} &= 0.3836 = 38.36 \ \% \end{split}$$ at the tip end exactly # Chapter - 4 Convection ## 01. Ans: 40 W/m²K Sol: Given that: $$V_1 = 100 \text{ m/s},$$ $$V_2 = 20 \text{ m/s},$$ $$q_1 = 20,000 \text{ W/m}^2$$ Heat transfer from object (1) = $h_1 (T_s - T_\infty)$ $$20000 = h_1 (400 - 300)$$ $$h_1 = 200 \text{ W/m}^2\text{K}$$ Reynold's number for object (1) $$Re_1 = \frac{V_1 L_1}{V_1} = \frac{100 \times 1}{V_1} = \frac{100}{V_1}$$ Reynold's number for object (2) $$Re_2 = \frac{V_2L_2}{v_2} = \frac{20 \times 5}{v_2} = \frac{100}{v_2}$$ Since, $v_1 = v_2$ (for the same fluid) $$\therefore$$ Re₁ = Re₂ : Prandtl number is the property of the fluid. $$\therefore$$ $Pr_1 = Pr_2$ Nusselt number (Nu) = f [Re.Pr] $$Nu_1 = Nu_2$$ $$\frac{\mathbf{h}_1 \mathbf{L}_1}{\mathbf{k}_1} = \frac{\mathbf{h}_2 \mathbf{L}_2}{\mathbf{k}_2}$$ $$\frac{h_2}{h_1} = \frac{L_1}{L_2}$$ $$h_2 = h_1 \times \frac{L_1}{L_2} = 200 \times \frac{1}{5} = 40 \text{ W/m}^2 \text{K}$$ 02. Ans: (d) Sol: Given data: $$Pr=0.7, \qquad \quad T_{\infty}=400 \ K$$ $$T_s = 300 \text{ K}, \qquad \frac{u_{\infty}}{v} = 5000 / \text{ m}$$ $$k = 0.263 \text{ W/mK}$$ $$\frac{T - T_s}{T_{\infty} - T_s} = 1 - e^{\left(-Pr\frac{u_{\infty}y}{v}\right)}$$ $$T = T_s + (T_{\infty} - T_s) \left[1 - e^{\left(-Pr\frac{u_{\infty}y}{v}\right)} \right]$$ $$\frac{dT}{dy} = \left(T_{\infty} - T_{s}\right) \left[0 - e^{\left(-Pr\frac{u_{\infty}y}{v}\right)}\right] \left(-Pr\frac{u_{\infty}}{v}\right)$$ $$\left. \frac{dT}{dy} \right|_{y=0} = \left(T_{\infty} - T_{s} \right) \left(-1 \right) \left(-Pr \frac{u_{\infty}}{v} \right)$$ $$= \left(T_{\infty} - T_{s}\right) \left(Pr \frac{u_{\infty}}{v}\right)$$ Heat transfer rate = Heat conduction just adjacent on the surface (i.e. at y = 0) $$q = -k \frac{dT}{dy} \Big|_{y=0}$$ $$q = -k \left(T_{\infty} - T_{s} \right) \left(Pr \frac{u_{\infty}}{v} \right)$$ $$q = 0.0263 (300 - 400) [0.7 \times 5000]$$ 03. Ans: (c) **Sol:** Given data: $q = 9205 \text{ W/m}^2$ $$u_{(y)} = Ay + By^{2} - cy^{3}$$ $T_{(y)} = D + Ey + Fy^{2} - Gy^{3}$ $\frac{du}{dy} = A + 2By - 3cy^{2}$ $$\frac{\mathrm{d}\mathbf{u}}{\mathrm{d}\mathbf{y}}\Big|_{\mathbf{v}=\mathbf{0}} = \mathbf{A}$$ Since According to Newton's law of viscosity: Wall shear stress $$(\tau_s) = \mu \frac{du}{dy}\Big|_{y=0}$$ = μA Skin friction coefficient (c_f) = $\frac{\tau_s}{\frac{1}{2}\rho u_{\infty}^2}$ $$c_f\!=\frac{2\mu A}{\rho u_{_\infty}^2}$$ $$c_f = \frac{2\nu A}{u_{\infty}^2} \qquad \left(\nu = \frac{\mu}{\rho}\right)$$ For the temperature profile: $$\frac{dT}{dy} = E + 2Fy - 3Gy^2$$ $$\frac{dT}{dy}\bigg|_{y=0} = E$$ Energy balance: Conduction heat transfer in the fluid adjacent to the wall (i.e. at y = 0) = convective heat transfer inside the fluid. $$-k\frac{dT}{dy}\bigg|_{y=0} = h(T_s - T_{\infty})$$ $$h = \frac{-k \frac{dT}{dy}\Big|_{y=0}}{T_s - T_{\infty}} = \frac{-kE}{T_s - T_{\infty}}$$ $$h = \frac{kE}{T_{\infty} - D}$$ $(T_s = D, from the temperature profile)$ 04. Ans: (b) **Sol:** Given data: $$\dot{m} = 2 \text{ kg/s}$$, $D = 0.04 \text{ m}$, $T_i = 25 ^{\circ}\text{C}$, $T_o = 75 ^{\circ}\text{C}$, $T_s = 100 ^{\circ}\text{C}$, $h = 6916 \text{ W/m}^2\text{K}$, $$c_p = 4181 \text{ J/kg.K.}$$ LMTD = $$\frac{\theta_1 - \theta_2}{\ln\left(\frac{\theta_1}{\theta_2}\right)} = \frac{75 - 25}{\ln\left(\frac{75}{25}\right)} = 45.51$$ °C Heat transfer rate = $h \times A \times LMTD$ $$\dot{m}c_p(T_o - T_i) = 6916 \times \pi \times 0.04 \times L \times
45.51$$ $$2 \times 4181 \times (75 - 25) = 39554 L$$ $$\Rightarrow$$ L \approx 10.6 m 05. **Ans: (b)** Since Sol: Given data: $$D = 30 \text{ mm},$$ $$T_{\infty} = 20^{\circ} C$$ $$h = 11 \text{ W/m}^2 \text{K},$$ $$L = 1 \text{ m}$$ $$\begin{array}{c} T_{s} = C \\ T_{avg} = 150^{\circ} \end{array}$$ $$T_{\infty} = 20^{\circ} \\ h = 11 \text{ W/m}^{2} \text{ K}$$ $$T_{avg}$$ R_i R_1 R_0 T_{∞} For laminar fully developed with constant wall temperature condition: $$Nu = 3.66$$ $$\frac{hD}{k} = 3.66$$ $$h = 3.66 \text{ k/D}$$ $$h = 3.66 \times \frac{0.133}{0.03} = 16.22 \,\text{W/m}^2\text{K}$$ $$q = \frac{T_{avg} - T_{\infty}}{\frac{1}{h_i} + \frac{1}{h_o}} = \frac{150 - 20}{\frac{1}{16.22} - \frac{1}{11}} = 80.3 \,\text{W} \,/\,\text{m}^2$$ 06. Ans: (c) Sol: In constant wall temperature condition, mean temperature of the fluid continuously changes in the direction of fluid flow. The temperature difference between surface temperature and mean fluid temperature decreases in the direction of flow. > Therefore, mean temperature difference is considered as log mean temperature difference in calculation. > For the temperature profile, refer to the diagram in Solution of O. No. 04 #### 07. Ans: (b) **Sol:** Nusselt number (Nu) = 4.36 for laminar flow through tubes with constant heat flux condition. > Nusselt number (Nu) = 3.36 for laminar flow through tubes with constant wall temperature condition. For the same tube and fluid, $h_{constant\ heat\ flux} > h_{constant\ wall\ temperature}$ #### 08. Ans: (d) **Sol:** Given data: $$\begin{split} & \text{Pr} = 3400, & k = 0.145 \text{ W/mK}, \\ & v = 288 \times 10^{-6} \text{ m}^2 \text{sec}, \\ & \alpha = 0.847 \times 10^{-7} \text{ m}^2/\text{s}, \\ & \beta = 0.7 \times 10^{-3}/\text{K}, & T_s = 70^{\circ}\text{C}, \end{split}$$ Characteristic length $$(L_c) = \frac{As}{P} = \frac{\frac{\pi}{4}D^2}{\pi D}$$ $$= \frac{D}{4} = \frac{0.4}{4} = 0.1 \text{ m}$$ D = 0.4 m. Grashoff number, $$(Gr) = \frac{g\beta\Delta TL_c^3}{v^2}$$ $$Gr = \frac{9.81\times0.70\times10^{-3}\times65\times(0.1)^3}{(288\times10^{-6})^2}$$ $$Gr = 5381.401$$ $$Ra = Gr.Pr = 5381.401\times3400$$ $$= 18.29\times10^6$$ Nusselt number $(Nu) = \frac{\overline{h}L_c}{k} = 0.15(Ra)^{1/3}$ $$= \frac{\overline{h}\times0.1}{0.145} = 0.15(18.29\times10^6)^{1/3}$$ $$\overline{h} = 57.312\,W/m^2K$$ Heat transfer rate, $(Q) = hA\ (T_s-T_\infty)$ $$Q = 57.312\times\frac{\pi}{4}(0.4)^2\times(70-5)$$ #### 09. Ans: $12.70 \text{ W/m}^2\text{K}$ **Sol:** Given data: Since $$\begin{split} \rho &= 1.204 \text{ kg/m}^3, & c_p &= 1007 \text{ J/kg.K}, \\ Pr &= 0.7309, & F_D &= 0.86 \text{ N}, \\ T_\infty &= 20^{\circ}\text{C}, & u_\infty &= 7 \text{ m/s} \\ Area (A) &= 2[2 \times 3] &= 12 \text{ m}^2 \end{split}$$ O = 468.13 W Skin friction coefficient (c_f) = $$\frac{F_D}{\frac{1}{2}\rho A u_{\infty}^2}$$ $$c_f = \frac{2F_D}{A\rho u_{\infty}^2} = \frac{2 \times 0.86}{12 \times 1.204 \times 7^2} = 2.43 \times 10^{-3}$$ $T_{\infty} = 5^{\circ}C$ *According to Reynold's – Colburn analogy:* $$St. Pr^{2/3} = \frac{c_f}{2}$$ $$St(0.7309)^{2/3} = \frac{2.43 \times 10^{-3}}{2}$$ $$St = \frac{h}{\rho u_{\infty} c_{p}} = 1.5 \times 10^{-3}$$ $$h = 12.70 \text{ W/m}^2\text{K}$$ #### 10. Ans: (c) **Sol:** The variation of heat transfer coefficient (h) in the direction of fluid flow over a flat plate is shown in figure below. As, $$h \propto \frac{1}{\sqrt{x}}$$ From the figure $h_1 > h_2 > h_3$ According to Newton's law of cooling, Heat flux $(q) = h\Delta t$ $$q \propto h$$ $$q_1 > q_2 > q_3$$ The maximum local heat flux = q_1 (i.e. at $$x = x_1$$) ## 11. Ans: (a) Sol: Given data: $$L = 3 \text{ m},$$ $$h_x = 0.7 + 13.6 \text{ x} - 3.4 \text{x}^2$$ Average heat transfer coefficient $$(\overline{h}) = \frac{1}{L} \int_{0}^{L} h_{x} dx$$ $$\overline{h} = \frac{1}{3} \int_{0}^{3} (0.7 + 13.6x - 3.4x^{2}) dx$$ $$\overline{h} = \frac{1}{3} \left[0.7x + \frac{13.6x^2}{2} - \frac{3.4x^3}{3} \right]_0^3$$ $$\overline{h} = \frac{1}{3} \left[0.7(3) + \frac{13.6(3)^2}{2} - \frac{3.4(3)^3}{3} \right]$$ $$\overline{h} = 0.7 + \frac{13.6 \times 3}{2} - \frac{3.4 \times 3^2}{3}$$ $$\bar{h} = 10.9 \, \text{W} / \text{m}^2 \text{K}$$ Heat transfer coefficient at x = L = 3 m $$h_{x=L=3} = 0.7 + 13.6 (3) - 3.4 (3)^2$$ $$h_{x = L} = 10.9 \text{ W/m}^2 \text{K}$$ $$\frac{\overline{h}}{h_{x=L=3m}} = \frac{10.9}{10.9} = 1$$ #### 12. Ans: (a) Sol: In turbulent flow over cylinder Nu $$\propto$$ Ra $^{\frac{1}{3}} \propto$ (D³) $^{\frac{1}{3}}$ $$\frac{hD}{k}$$ \propto D $$h \propto k$$ Nu = Nusselt Number. Ra = Rayleigh Number = Gr . Pr Gr = Grashof Number Pr = Prandtle Number #### 13. Ans: (a) Sol: For a fully developed laminar flow through pipe, the Nusselt Number Nu is constant. $$Nu = \frac{hD}{k}$$ $$h = \frac{Nu \times k}{D}$$ $$h \, \propto \frac{1}{D}$$ When the Diameter is halved $$D_2 = \frac{D_1}{2} \implies \frac{h_2}{h_1} = 2.$$ ## 14. Ans: (b) **Sol:** Grashoff's number, $Gr = \frac{g.\beta \Delta TL^3}{V^2}$ $$Gr \propto L^3$$ $Nu = c (Gr.Pr)^{1/4} \rightarrow for laminar flow$ $$Nu \propto (L^3)^{1/4}$$ $$Nu \propto (L)^{3/4}$$ $$\frac{hL}{k} \propto (L)^{3/4}$$ $$h \propto (L)^{-1/4}$$ Heat transfer, $$Q = h A \Delta T$$ $$Q \propto h A$$ $$Q \propto (L)^{-1/4} L$$ $$Q \propto (L)^{-1/4} L$$ $[\because A = \pi dL \Rightarrow A \propto L]$ Since $$Q \propto (L)^{3/4}$$ $$\frac{\mathbf{Q}_1}{\mathbf{Q}_2} = \left(\frac{\mathbf{L}_1}{\mathbf{L}_2}\right)^{3/4}$$ $$\frac{8}{1} = \left(\frac{320}{L_2}\right)^{3/4}$$ $$(8)^{4/3} = \frac{320}{L_2}$$ $$16 = \frac{320}{L_2}$$ $$\Rightarrow$$ L₂ = 20 cm ## 15. Ans: (c) Sol: At the top of the boundary layer the temperature changes are negligible. ## 16. Ans: (b) **Sol:** $\delta = 0.5 \text{ mm}, \quad \mu = 25 \times 10^{-6}$ $$C_p = 2000 \text{ J/kg.K}$$ $$k = 0.05 \text{ W/mK}$$ $$Pr = \frac{\mu C_p}{K} = \frac{25 \times 10^{-6} \times 2000}{0.05} = 1$$ $$\frac{\delta}{\delta_{t}} = \Pr^{\frac{1}{3}} \Longrightarrow \delta = \delta_{t} = 0.5 \text{mm}$$ ## 17. Ans: (d) **Sol:** $Q_t = Q_{top} + Q_{bottom} + 4 \times Q_{side}$ $$6 \times hA \Delta T = h_1A \Delta T + h_2A \Delta T + 4h_3A \Delta T$$ $$6h = h_1 + h_2 + 4h_3$$ $$h = \frac{h_1 + h_2 + 4h_3}{6}$$ ## 18. Ans: (d) **Sol:** $$\frac{\delta}{\delta_t} = (Pr)^{\frac{1}{3}}$$ $$\quad \text{If} \quad Pr = 1 \; , \qquad \delta = \delta_t$$ $$Pr < 1$$, $\delta < \delta_t$ $$Pr > 1$$, $\delta > \delta_t$ #### 19. Ans: (b) **Sol:** k = 1.0 W/mK $Re = 1500 \rightarrow means that the flow is laminar$ $$D = 10 \text{ cm} = 0.1 \text{m}$$ For a fully developed laminar flow through pipe (i) with constant heat flux $$N_u = 4.364 \rightarrow constant$$ = $\frac{hD}{k}$ $h = \frac{4.364 \times 1.0}{0.1} = 43.64 \text{ W/mk}$ (ii) With constant wall temp Nu = 3.66 = $$\frac{hD}{K}$$ h = $\frac{3.66 \times 1.0}{0.1}$ = 36.6 W/m²k ## 20. Ans: (c) Sol: - Transient conduction \rightarrow Biot number - Mass transfer \rightarrow Sherwood number - Forced Convection → Reynold's number - Free Convection → Grashoff number #### 21. Ans: (a) **Sol:** Stanton number is used in forced convection heat transfer in flow over and flat plate. According to Reynolds Colburn analogy: St. $$(Pr)^{2/3} = \frac{C_{fx}}{2}$$ where, St = Stanton number, Pr = Prandtl number, C_{fx} = Skin friction coefficient 22. Ans: (c) **Sol:** Weins law, $\lambda T = 2898$ Fourier law = $$Q = -kA \frac{dT}{dx}$$ Reynolds No = Re = $$\frac{\rho VD}{\mu}$$ → force convection Stanton No = St = $$\frac{Nu}{\text{Rex Pr}}$$ → Forced convection Fourier No = Fo = $$\frac{\alpha \tau}{\ell^2}$$ Transient conduction 23. **Ans: (b)** **Sol:** Nu = $$C \left[\frac{g\beta\Delta Tx^3}{v^2} \cdot \frac{\mu C_p}{k} \right]^{\frac{1}{3}}$$ $$\therefore \frac{hx}{k} = C \left[\frac{g\beta\Delta T}{v^2} \frac{\mu C_p}{k} \right]^{\frac{1}{3}} .x$$ ⇒ 'h' is independent of the characteristic length. For natural convection over a vertical flat plate in the turbulent region ($Gr_L > 10^9$) is $$\overline{Nu_L} = 0.13 \left(Gr_L Pr^{\frac{1}{3}} \right)$$ #### 24. Ans: (d) **Sol:** Nusselt number is greater than 1 in most of cases but not always. In special case Nu = 1 Nusselt number cannot be less than 1 $$Nu = \frac{R_{cond.fluid}}{R_{conv.fluid}} = \frac{Q_{conv}}{Q_{cond}}$$ 25. Ans: (a) Sol: As the external force is applied on the fluid particles, the velocity of fluid particles is increasing so that many number of cold particles will come in contact with hot surface and carry away more amount of heat and hence heat transfer coefficient for forced convection is higher. #### **Conventional Practice Solutions** 01. **Sol:** Given: Velocity of air = 10 m/s Temperature air $(T_a) = 300 \text{ K}$ Diameter of Tube (D) = 11.2 mm = 0.0112 m Temperature of tube wall $(T_w) = 373 \text{ K}$ k = 0.02624 W/mK; $$c_p = 1.005 \times 10^3 \text{ J/kg-K}$$ $$\rho = 1.174 \text{ kg/m}^3$$ $$v = 1.568 \times 10^{-5} \text{ m}^2/\text{sec}$$ Prandtle No. (Pr) = 0.7 Nu = 3.66 + $$\frac{0.668 \left(\frac{d}{2}\right) \text{Re.Pr}}{1 + 0.04 \left(d\right) \text{Re.Pr}}$$; if Re < 2300 $$Nu = 0.023 \text{ Re}^{0.8} \text{Pr}^{0.4}$$; if $Re > 2300$ $$Re = \frac{\rho VD}{\mu} = \frac{VD}{\nu}$$ $$= \frac{10 \times 0.0112}{1.568 \times 10^{-5}}$$ $$Re = 7142.85 > 2300$$ Hence flow is turbulent $$Nu = 0.023 \text{ Re}^{0.8} \text{ Pr}^{0.4}$$ $$\frac{\overline{h}L}{k} = 0.023 \times (7142.85)^{0.8} \times (0.7)^{0.4}$$ $$\frac{\overline{h} \times D}{k} = 24.46$$ $$\overline{h} = \frac{24.46 \times K}{D} = \frac{24.46 \times 0.02624}{0.0112}$$ $$\overline{h} = 56.57 \text{ W/m}^2\text{K}$$ $$\theta_1 = 373 - 300 = 73$$ $$\theta_2 = 373 - t_0$$ #### **Energy balance:** Heat transfer = $\dot{m} C_p \Delta T = \overline{h} A \theta_m$ Where $$\dot{m} = \rho AV$$ $$= 1.174 \times \frac{\pi}{4} (0.0112)^2 \times 10$$ $$= 1.157 \times 10^{-3} \,\text{kg/s}$$ $$U = \overline{h} = 57.31 \text{ W/m}^2 \text{K}$$ $$A = \pi DL = \pi (0.0112) \times 2.5 = 0.088 \text{ m}^2$$ $$\theta_{m} = \frac{\theta_{1} -
\theta_{2}}{\ell n \frac{\theta_{1}}{\theta_{2}}} = \frac{73 - (373 - (T_{0})_{air})}{\ell n \left(\frac{73}{373 - (T_{0})_{air}}\right)}$$ $$\therefore 1.157 \times 10^{-3} \times 1.005 \times 10^{3} [(T_0)_{air} - 300)]$$ $$= 56.57 \times 0.088 \times \frac{(T_0)_{air} - 300}{ln\left(\frac{73}{373 - (T_0)_{air}}\right)}$$ $$(373 - (T_0)_{air})$$ $$1.163[(T_0)_{air} - 300] = 4.978 \left(\frac{(T_0)_{air} - 300}{ln\left(\frac{73}{373 - (T_0)_{air}}\right)}\right)$$ $$(T_0)_{air} - 300 = 4.28 \left(\frac{(T_0)_{air} - 300}{ln \left(\frac{73}{373 - (T_0)_{air}} \right)} \right)$$ $$\Rightarrow ln\left(\frac{73}{373 - (T_0)_{air}}\right) = 4.28$$ $$\Rightarrow$$ $(T_0)_{air} = 372 \text{ K}$ **02.** Sol: Given: Viscosity of brine (μ) =16.5×10⁻⁶ N-s/m² Thermal conductivity (k) = 0.85 W/m-K Inner diameter of pipe = 0.025 m Velocity of fluid $V_1 = 6.1 \text{ m/s}$ Heat transfer coefficient, h₁=1135 W/m²K Initial brine temperature $t_{b1} = -1$ °C Pipe temperature $t_p = 18.3$ °C Rise in prime temperature $\Delta t = ?$ Velocity doubled $V_2 = 2V_1$ Specific heat of brine $(C_p) = 3768 \text{ J/kg-K}$ Density (ρ) = 1000 kg/m³ Assume length of pipe (l) = 1 m Reynold No. (Re) = $$\frac{\rho V D}{\mu}$$ = $\frac{1000 \times 6.1 \times 0.025}{16.5 \times 10^{-6}}$ = $9.2424 \times 10^6 > 4000$: Hence flow is turbulent. For turbulent flow Nusselt's Number $(Nu) = 0.023(Re)^{0.8}(Pr)^{n}$ Where, n = 0.4 for heating n = 0.3 for cooling As brine solution getting heated, consider $$n = 0.4$$. :. Nu = $$0.023(Re)^{0.8}(Pr)^{0.4}$$ But for same fluid Pr no. is constant $$\frac{\left(\mathrm{Nu}\right)_2}{\left(\mathrm{Nu}\right)_1} = \left(\frac{\mathrm{Re}_2}{\mathrm{Re}_1}\right)^{0.8}$$ $$\frac{h_2}{h_1} = \left(\frac{V_2}{V_1}\right)^{0.8}$$ $$h_2 = h_1 \times \left(\frac{V_2}{V_1}\right)^{0.8}$$ = 1135 \times 2^{0.8} $$= 1976.149 \approx 1976 \text{ W/m}^2\text{K}$$ $$\left(:: Re = \frac{\rho VD}{\mu} \quad \rho, D, \mu \text{ are constant } Re = f(V) \right)$$ $$\left(:: N = \frac{hL}{K} \ L, K \text{ are constant } Nu = f(h) \right)$$ Where suffix '1' and '2' denotes at section (1) and (2) #### **Energy balance:** Heat gained by brine solution = Heat lost by convection from the pipe surface. $$\dot{m}C_{p}(T_{b2}-T_{b1}) = h_{2}A(T_{p}-(T_{m})_{b})$$ $$\dot{m} = \rho AV = 1000 \times \frac{\pi}{4} (0.025)^2 \times 12.2$$ $$(:: V_2 = 2V_1 = 2 \times 6.1 = 12.2)$$ $$\dot{m} = 5.99 \text{ kg/sec}$$ Let mean bulk temperature of brine $$(T_m)_b = \frac{T_{b1} + T_{b2}}{2}$$ $$(T_{\rm m})_{\rm b} = \frac{T_{\rm b2} - 1}{2}$$ $$\Rightarrow$$ 5.99×3768×(T_{b2}+1) =1976×($$\pi$$ ×0.025×L)× $\left(18.3 - \frac{T_{b2} - 1}{2}\right)$ (Assume L = 1m) $$\Rightarrow$$ 22570.32(T_{b2} + 1) = 77.6(37.6 - T_{b2}) $$\Rightarrow$$ 22647.92 T_{b2} = -19652.56 $$\Rightarrow$$ T_{b2} = -0.8677°C :. Rise temperature of brine solution per meter length of pipe is = -0.8677 –(-1) = 0.1323°C/m 01. Ans: (c) Sol: $$A_1F_{12} = A_2F_{21}$$ & $F_{12} = 1$ $$F_{21} = \frac{A_1}{A_2}$$ $$F_{21} = \frac{\frac{\pi}{4}d^2}{\left(\frac{\pi \times D \times \ell}{2}\right)} = \frac{\frac{\pi}{4}d^2}{\frac{\pi \times D}{2} \times \sqrt{\frac{D^2}{4} + h^2}}$$ $$= \frac{d^2}{2D\frac{\sqrt{D^2 + 4h^2}}{2}} = \frac{d^2}{D\sqrt{D^2 + 4h^2}}$$ 02. Ans: (a) Sol: Given data: $$\epsilon_1 = 0.5,$$ $\epsilon_2 = 0.9,$ $T_1 = 600 \text{ K},$ $T_2 = 400 \text{ K}$ Net heat exchange between two long parallel plates, $$\frac{Q}{A} = \frac{\sigma(T_1^4 - T_2^4)}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1}$$ $$= \frac{5.67 \times 10^{-8} (600^4 - 400^4)}{\frac{1}{0.5} + \frac{1}{0.9} - 1} = 2.79 \,\text{kW/m}^2$$:25: 03. Ans: 792.16 K Sol: Given data: $$d = 0.05 \text{ m}, \quad k = 15 \text{ W/mK}$$ $$D = 0.06 \text{ m}, \quad q_g = 20 \times 10^3 \text{ W/m}^3$$ $$T_2 = 773 \text{ K}, \quad \epsilon_1 = \epsilon_2 = 0.2$$ Total heat generated $$(Q_g) = q_g \frac{\pi}{4} d^2 L = 12.5\pi L$$ $$Q_g = \frac{A_1 \sigma \left(T_1^4 - T_2^4\right)}{\frac{1}{\epsilon_1} + \left(\frac{D_1}{D_2}\right) \left(\frac{1}{\epsilon_2} - 1\right)}$$ $$12.5\pi L = \frac{\pi dL \times \sigma(T_1^4 - 773^4)}{\frac{1}{0.2} + (\frac{50}{60})(\frac{1}{0.2} - 1)}$$ $$12.5 = \frac{0.05 \times \sigma \left(T_1^4 - 773^4\right)}{\frac{1}{0.2} + \left(\frac{50}{60}\right) \left(\frac{1}{0.2} - 1\right)}$$ $$\Rightarrow$$ T₁ = 792.16 K 04. Ans: (c) **Sol:** $$D_1 = 0.8 \text{m}$$, $D_2 = 1.2 \text{ m}$, $\epsilon_1 = \epsilon_2 = 0.05$, $$T_1 = 95 \text{ K}, \quad T_2 = 280 \text{ K},$$ $$h_{\rm fg}=2.13\times 10^5~\text{J/kg}$$ Net heat transfer, $$Q = -\dot{m}h_{\mathrm{fg}} = \frac{A_1\sigma\!\left(T_1^4 - T_2^4\right)}{\displaystyle\frac{1}{\varepsilon_1} + \!\left(\frac{D_1}{D_2}\right)^{\!2}\!\!\left(\frac{1}{\varepsilon_2} - 1\right)}$$ $$-\dot{m} \times 2.13 \times 10^{5} = \frac{\pi (0.8)^{2} \times 5.67 \times 10^{-8} \times (95^{4} - 280^{4})}{\frac{1}{0.05} + \left(\frac{0.8}{1.2}\right)^{2} \left(\frac{1}{0.05} - 1\right)}$$ $$\dot{m} = 1.1913 \times 10^{-4} \text{kg/s} = 0.4108 \text{kg/hr}$$ 05. Ans: (d) **Sol:** Given data: $$\epsilon_1 = \epsilon_2 = 0.8$$, $$Q_{without shield} = 10 Q_{with shield}$$ $$\frac{Q_{\text{with shield}}}{Q_{\text{without shield}}} = \frac{\frac{\sigma\left(T_1^4 - T_2^4\right)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} + \frac{2N}{\varepsilon_s} - (N+1)}}{\frac{\sigma\left(T_1^4 - T_2^4\right)}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}}$$ $$\frac{Q_{\text{with shield}}}{Q_{\text{without shield}}} = \frac{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} + \frac{2N}{\epsilon_s} - (N+1)}$$ $$10 = \frac{\frac{1}{0.8} + \frac{1}{0.8} - 1}{\frac{1}{0.8} + \frac{1}{0.8} + \frac{2}{\epsilon_{\rm S}} - 2}$$ (Number of shield (N) = 1) $$\epsilon_{\rm S} = 0.138$$ **06.** Ans: (c) **Since 1995** Sol: Given data: $$G = 300 \text{ W/m}^2, \in = 0.4, \alpha = 0.3$$ $$\begin{aligned} &\alpha GA_{projected} = \in E_bA\\ &0.3 \times 300 \times \frac{\pi}{4}D^2 = 0.04 \times \sigma \times T^4 \times \pi D^2 \end{aligned}$$ $$0.3 \times 300 \times \frac{\pi}{4} (1)^2 = 0.04 \times 5.67 \times 10^{-8} \times T^4 \times \pi (1)^2$$ $\Rightarrow T = 315.6 \text{ K}$ 07. Ans: (c) Sol: Given data: $$L = 1.5 \times 10^{11} \text{ m}, R_{SUN} = 7 \times 10^8 \text{ m},$$ ## **Energy balance:** $$E_b \times A_{SUN} = G \times A_{Hemisphere}$$ $$\sigma T_{\text{SUN}}^4 \times 4\pi R^2 = G \times 4\pi L^2$$ $$T_{SUN}^4 = \left(\frac{L}{R}\right)^2 \frac{G}{\sigma}$$ $$T_{SUN} = 5802.634 \approx 5800 \text{ K}$$ #### **08.** Ans: (a) Sol: Given data: $$J = 5000 \text{ W/m}^2$$ $$T_1 = 350 \text{ K},$$ $$T_{\infty} = 300 \text{ K},$$ $$h = 40 \text{ W/m}^2 \text{K},$$ $$\alpha = 0.4$$ #### **Energy balance:** $$\begin{split} Q_{in} + Q_{gen} - Q_{out} &= Q_{stored} \\ Q_{in} - Q_{out} &= 0 \quad (Q_{stored} = 0 \text{ and } Q_{gen} = 0) \\ 2G - [2J + 2 q_{conv}] &= 0 \\ 2G - [2 \times 5000 + 2 \times 2000] &= 0 \\ G &= 7000 \text{ W/m}^2 \end{split}$$ Leaving energy (J) = $$\rho G + E + \tau G$$ $$J = (\rho + \tau) G + E$$ $$J = (1 - \alpha) G + E$$ $$J = (1 - 0.40) \times 7000 + \epsilon E_b$$ $$5000 = 0.6 \times 7000 + \epsilon \times 5.67 \times 10^{-8} \times (350)^4$$ $$\Rightarrow \epsilon = 0.940$$ 09. Ans: (d) Sol: Black body emission does not depend on the size of the object. 10. Ans: (b) Since **Sol:** Given data: $$T_{\rm w} = 533 \, {\rm K},$$ $$T_{tc} = 1066 \text{ K},$$ $$\epsilon = 0.5,$$ $$\overline{h} = 114 \,\mathrm{W/m^2 K}$$ Energy balance: Heat transfer by convection = Heat transfer by radiation $$\begin{split} q_{conv} &= q_{rad} \\ &\overline{h} \big(T_{air} - T_{tc} \big) = \in \sigma \Big(T_{tc}^4 - T_w^4 \Big) \\ 114 \big(T_{air} - 1066 \big) &= 0.5 \times 5.67 \times 10^{-8} (1066^4 - 533^4) \\ \Rightarrow \qquad T_{air} &= 1367 \text{ K} \end{split}$$ #### Ans: (a) Sol: $$T_{sky} = -30^{\circ}C,$$ $h = 4.36 \text{ W/m}^2K$ $T_s = 25^{\circ}C, T_{\infty} = 0^{\circ}C$ $D = 30 \text{ cm}$ Power required by resistance heater = Heat loss by convection from the surface + Heat loss by radiation from surface $$\begin{split} P &= hA \; (T_s - T_\infty) + \varepsilon \sigma \; A_s \; (T_s^{\; 4} - T_{sky}^{\; \; 4}) \\ &= 4.36 \times \pi \times D \times L \; (25 - 0) + 0.8 \times 5.67 \times \\ &= 10^{-8} \times \pi \times D \times L \; (298^4 - 243^4) \\ &= 4.36 \times \pi \times 0.3 \times 100 \; (25 - 0) + 0.8 \times 5.67 \\ &\times 10^{-8} \times \pi \times 0.3 \times 100 \; (298^4 - 243^4) \end{split}$$ = 29080.64 WP = 29.08 kW Note: Correct answer is option (a). ## 12. Ans: (b) **Sol:** $$F_{11} + F_{12} + F_{13} + F_{14} = 1$$ (Summation rule) $F_{14} = 1 - (0.1 + 0.4 + 0.25)$ $= 1 - 0.75 = 0.25$ $A_1 F_{14} = A_4 F_{41}$ (Reciprocity theorem) $F_{41} = \frac{A_1}{A_4} \times F_{14} = \frac{4}{2} \times 0.25 = 0.5$ ## 13. Ans: (d) Sol: Infinite parallel plates $\Rightarrow \frac{1}{\frac{1}{2} + \frac{1}{2} - 1}$ - Body 1 completely enclosed by body 2 but body 1 is very small $\Rightarrow \epsilon_1$ - Radiative exchange with two small gray bodies $\Rightarrow \epsilon_1 \epsilon_2$ - Two concentric cylinders with large length $$\Rightarrow \frac{1}{\frac{1}{\epsilon_1} + \frac{A_1}{A_2} \left(\frac{1}{\epsilon_2} - 1\right)}$$ #### Ans: (c) 14. Sol: - Window glass: Transparency to short wavelength and becomes opaque for long wavelength. - Gray surface: emissivity independent of wavelength. - Carbondioxide: emission and absorption limited to certain bands and wavelength. - Radiosity: Rate at which radiation leaves a surface (Total leaving energy from a surface). Sol: 1995 $$(2)$$ $$\alpha = 20^{\circ} (1)$$ View factor $$F_{1-2} = F_{2-1} = 1 - \sin(\alpha/2)$$ = $1 - \sin(10)$ = 0.83 16. Ans: (a) #### **Conventional Practice Solutions** ## 01. Sol: A_2 = sides surface area A_1 = Bottom surface area Given shape factor from the bottom surface to surroundings is 0.06. i.e., $$F_{13} = 0.06$$ As we know $F_{11} + F_{12} + F_{13} = 1$ $(:: F_{11} = 0 \text{ since
flat surface})$ $$F_{12} = 1 - 0.06 = 0.94$$ Similarly $F_{21} + F_{22} + F_{23} = 1$ By reciprocity theorem $$A_1F_{12} = A_2F_{21}$$ $$F_{21} = \frac{A_1}{A_2} F_{12}$$ $$= \frac{\pi \left(\frac{0.1}{2}\right)^2}{\pi (0.1)(0.2)} \times 0.94 = \frac{0.1}{4 \times 0.2} \times 0.94$$ $$F_{21} = 0.1175$$ $$F_{23} = 0.1175$$ $$(:: F_{21} = F_{23} \text{ by symmetry})$$ $$F_{22} = 1 - 2(0.1175)$$ $$F_{22} = 0.765$$ Power required to the furnace $$= A_2 F_{21} \sigma_b (T_2^4 - T_1^4) + A_2 F_{23} \sigma_b (T_2^4 - T_3^4)$$ $$= \pi (0.1)(0.2) \times 0.1175 \times 5.67 \times 10^{-8}$$ $$\times (1800^4 - 2000^4) + \pi (0.1)(0.2) \times 0.1175$$ $$\times 5.67 \times 10^{-8} (1800^4 - 300^4)$$ Power = 2087.60 Power required = 2.0876 kW ≈ heat lost from surface to surroundings #### 02. #### Sol: Given: Since $$T_1 = 1000 \text{ K},$$ $T_2 = 500 \text{ K}$ $\varepsilon_1 = 0.8,$ $\varepsilon_2 = 0.8,$ $\varepsilon_3 = 1$ for reradiating surfaces & $Q_3 = 0$ Since all surface are flat, shape factors w.r.t itself are 'zero'. i.e. $$\begin{aligned} F_{11} &= F_{22} = F_{33} = 0\\ \text{since} \qquad Q_3 &= 0\\ Q_3 &= A_3(F_g)_{31}\sigma_b \Big(T_3^4 - T_1^4\Big) + A_3(F_g)_{32}\sigma_b \Big(T_3^4 - T_2^4\Big)\\ &------(1) \end{aligned}$$ Similarly $$F_{31} = F_{32} = 0.5$$, $F_{33} = 0$ $$(F_g)_{31} = \frac{1}{\frac{1 - \varepsilon_1}{\varepsilon_1} + \frac{1}{F_{31}} + \frac{1 - \varepsilon_3}{\varepsilon_3}}$$ $$= \frac{1}{\frac{1 - 0.8}{0.8} + \frac{1}{0.5} + \frac{1 - 1}{1}} = 0.444$$ $$(F_g)_{31} = (F_g)_{13} = 0.444 \dots (2)$$ $(F_g)_{32} = (F_g)_{23} = 0.444$ $$(F_g)_{12} = \frac{1}{\frac{1 - \varepsilon_1}{\varepsilon_1} + \frac{1}{F_{12}} + \frac{1 - \varepsilon_2}{\varepsilon_2}}$$ $$= \frac{1}{\frac{1 - 0.8}{0.8} + \frac{1}{0.5} + \frac{1 - 0.8}{0.8}}$$ $$(F_g)_{12} = 0.4$$ $$(F_g)_{12} = (F_g)_{13} = (F_g)_{21} = (F_g)_{31} = 0.4$$ $$\therefore (1) \Rightarrow T_3 = \left(\frac{T_1^4 + T_2^4}{2}\right)^{\frac{1}{4}}$$ $$= \left(\frac{1000^4 + 500^4}{2}\right)^{\frac{1}{4}}$$ $$T_3 = 853.74 \text{ K}$$ $$\therefore Q_1 \!\!=\!\! A_1(F_g)_{12} \sigma_b \! \left(\! T_1^4 - T_2^4 \right) \!\!+\! A_1(F_g)_{13} \sigma_b \! \left(\! T_1^4 - T_3^4 \right)$$ $$\frac{Q_1}{A_1} = 0.4 \times 5.67 \times 10^{-8} (1000^4 - 500^4) + 0.444$$ $$\times 5.67 \times 10^{-8} (1000^4 - 853.74^4)$$ $$\frac{Q}{A} = 33.063 \text{ kW/m}^2$$ 04. Sol: Given, $$F_{12} = ?$$ Let, $$A_4 = A_1 + A_3$$ = $(6 \times 6) + (6 \times 3) = 54$ $$A_4F_{4-2} = A_3F_{3-2} + A_1F_{1-2}$$ (*Note:* The above table will be given question paper) $$54 \times 0.125 = (3 \times 6) \times 0.28 + (6 \times 6) \times F_{1-2}$$ $$\Rightarrow F_{1-2} = 0.0475$$ **03.** ## Chapter - 6 **Heat Exchangers** 01. Ans: (d) **Sol:** Given that: $$T_{h1} = 70^{\circ}C, \qquad T_{c1} = 30^{\circ}C$$ $$T_{h2} = 40^{\circ}C, \qquad T_{c2} = 50^{\circ}C$$ $$\Delta T_1 = T_{h1} - T_{c2} = 20$$ $$\Delta T_2 = T_{h2} - T_{c1} = 10$$ Log Mean Temperature Difference $$(LMTD) = \frac{\Delta T_1 - \Delta T_2}{\ell n \left[\frac{\Delta T_1}{\Delta T_2}\right]} = \frac{20 - 10}{\ell n \left(\frac{20}{10}\right)} = 14.42$$ °C **02. Ans: (c)** Sol: $$LMTD = 20^{\circ}C$$, $T_{c1} = 20^{\circ}C$, $T_{h1} = 100^{\circ}C$ $$\dot{m}_{c} = 2\dot{m}_{h}$$ $$c_h = 2c_c$$ $$C_h = \dot{m}_h c_h = 2\dot{m}_h c_c$$ $$C_c = \dot{m}_c c_c = 2\dot{m}_h c_c$$ When $C = \frac{C_{min}}{C_{max}} = 1$, Temperature profile will be linear for the counter flow heat exchanger and the mean temperature difference between hot fluid and cold fluid will be same at every section. $$LMTD = \Delta T_1 = \Delta T_2$$ $$LMTD = \Delta T_1 = T_{h1} - T_{c2}$$ $$20 = 100 - T_{c2}$$ $$T_{c2} = 100 - 20 = 80^{\circ}C$$ 03. _Ans: 0.9 Sol: This is the counter flow type of heat exchanger because exit temperature of cold fluid is greater than that of hot fluid. $$T_{h1} - T_{h2} = 200 - 110 = 90$$ °C $$T_{c2} - T_{c1} = 125 - 100 = 25$$ °C ## **Energy balance:** Since Heat released by hot fluid = heat received by cold fluid $$\dot{m}_{h}c_{h}(T_{h1}-T_{h2})=\dot{m}_{c}c_{c}(T_{c2}-T_{c1})$$ $$\dot{m}_{\rm h}c_{\rm h} \times 90 = \dot{m}_{\rm c}c_{\rm c} \times 25$$ From the above equation $\dot{m}_c c_c > \dot{m}_h c_h$ Effectiveness ($$\in$$) = $\frac{Q_{act}}{Q_{max}} = \frac{\dot{m}_h c_h (T_{h1} - T_{h2})}{\dot{m}_h c_h (T_{h1} - T_{c1})}$ = $\frac{T_{h1} - T_{h2}}{T_{h1} - T_{c1}} = \frac{90}{200 - 100}$ = $\frac{90}{100} = 0.9$ #### 04. Ans: (c) Sol: Given data: $$\dot{m}_h = 3.5 \, \text{kg/s}, \qquad T_{h1} = 80 \, ^{\circ}\text{C},$$ $$c_c = 4180 \; J/kg^{\circ}C, \quad \ U_i = 250 \; W/m^{2\circ}C$$ $$c_h = 2560 \text{ J/kg}^{\circ}\text{C}, \quad T_{h2} = 40^{\circ}\text{C},$$ $$T_{c1} = 20$$ °C, $T_{c2} = 55$ °C $$\Delta T_1 = T_{h1} - T_{c2} = 25$$ $$\Delta T_2 = T_{h2} - T_{c1} = 20^\circ$$ Difference Temperature Log Mean (LMTD) = $$\frac{\Delta T_1 - \Delta T_2}{\ell n \left[\frac{\Delta T_1}{\Delta T_2}\right]} = \frac{25 - 20}{\ell n \left(\frac{25}{20}\right)} = 22.40$$ °C Heat transfer rate (Q) = $$\dot{m}_h c_h (T_{h_1} - T_{h_2}) = U_i \times A_i \times LMTD$$ 35 × 2560 (80–40) = 250 × $A_i \times 22.4$ $$A_i = 64 \text{ m}^2$$ #### 05. Ans: (a) Sol: Given data: $$T_{h1} = T_{h2} = 75$$ °C, $\dot{m}_h = 2.7 \text{ kg/s}$ $$\dot{m}_1 = 2.7 \, \text{kg/s}$$ $$T_{c1} = 21^{\circ}C$$ $$T_{c2} = 28^{\circ}C$$ $$A = 24 \text{ m}^2$$. $$h_{fg} = 255.7 \text{ kJ/kg}$$ $$\Delta T_1 = T_{h1} - T_{c1} = 54$$ °C $$\Delta T_2 = T_{h2} - T_{c2} = 47^{\circ}C$$ Log Mean Temperature Difference (LMTD) $$= \frac{\Delta T_1 - \Delta T_2}{\ell n \left(\frac{\Delta T_1}{\Delta T_2}\right)} = \frac{54 - 47}{\ell n \left(\frac{54}{47}\right)} = 50.149^{\circ} C$$ Heat transfer rate $$(Q) = \dot{m}_h \times h_{fg} = U \times A \times LMTD$$ $$2.7 \times 255.7 \times 10^3 = U \times 24 \times 50.419$$ $$\Rightarrow \qquad U = 571 \text{ W/m}^2 \text{°C}$$ 06. Ans: (c) **Sol:** $$T_{h1} = 150^{\circ}C$$, $T_{c1} = 25^{\circ}C$ $$T_{h2} = 80^{\circ}C$$, $T_{c2} = 60^{\circ}C$ $$\Delta T_1 = T_{h1} - T_{c1} = 125$$ $$\Delta T_2 = T_{h2} - T_{c2} = 20$$ Since LMTD = $$\frac{\Delta T_1 - \Delta T_2}{\ell n \left(\frac{\Delta T_1}{\Delta T_2}\right)} = \frac{125 - 20}{\ell n \left(\frac{125}{20}\right)} = 57.29$$ °C ## **Energy balance:** Heat released by hot fluid = heat received by cold fluid $$\dot{m}_{h}c_{h}(T_{h1}-T_{h2})=\dot{m}_{c}c_{c}(T_{c2}-T_{c1})$$ $$\dot{m}_{h}c_{h}(150-80) = \dot{m}_{c}c_{c}(60-25)$$ $$\dot{m}_h c_h \times 70 = \dot{m}_c c_c \times 35$$ From the above equation $$\dot{m}_{c}c_{c} > \dot{m}_{h}c_{h} \Rightarrow C_{min} = \dot{m}_{h}c_{h}$$ Heat transfer rate (Q) $$\dot{m}_h c_h (T_{h_1} - T_{h_2}) = U \times A \times LMTD$$ $$C_{min}(T_{h1} - T_{h2}) = U \times A \times LMTD$$ $$NTU = \frac{UA}{C_{min}} = \frac{T_{h1} - T_{h2}}{LMTD} = \frac{70}{57.29} = 1.22$$ #### 07. Ans: (c) **Sol:** Given data: $$T_{c1} = 20$$ °C, $$T_{h1} = 80^{\circ}C,$$ $$\dot{m}_c = 20 \text{ kg/s},$$ $$\dot{m}_h = 10 \text{ kg/s},$$ Sol: Gi $$c_h = c_c = 4.2 \times 10^3 \text{ J/kg.K},$$ $$\dot{m}_h c_h = C_{min}$$ Case – I, For parallel flow heat exchanger: ## **Energy balance:** Heat released by hot fluid = heat received by cold fluid **Since 1995** $$\dot{m}_{h}c_{h}(T_{h1} - T_{h2}) = \dot{m}_{c}c_{c}(T_{c2} - T_{c1})$$ $$10(80-T) = 20(T-20)$$ $$80 - T = 2(T-20)$$ $$80 - T = 2T - 40$$ $$120 = 3T$$ $$\Rightarrow T = 40^{\circ}C$$ Case – II, For counter flow heat exchanger: #### **Energy balance:** Heat released by hot fluid = heat received by cold fluid $$\begin{split} \dot{m}_{h}c_{h}(T_{h1} - T_{h2}) &= \dot{m}_{c}c_{c}(T_{c2} - T_{c1}) \\ 10(80 - T_{c1}) &= 20 (T_{c2} - T_{c1}) \\ 10(80 - 20) &= 20 (T_{c2} - 20) \\ \Rightarrow T_{c2} &= 50^{\circ}C \end{split}$$ 08. Ans: (b) Sol: Given data: $$Q = 23.07 \times 10^6 \text{ W},$$ $$T_{h1} = T_{h2} = 50^{\circ}C$$ $$T_{c1} = 15^{\circ}C$$, $$T_{c2} = 25^{\circ}C$$, $$D = 0.0225 \text{ m},$$ $$c_c = 4180 \text{ J/kg.K}$$ $$u_{avg} = 2.5 \text{ m/s},$$ $$U = 3160.07 \text{ W/m}^2\text{K}$$. $$LMTD = 29.72$$ °C Heat transfer rate (Q) = $$\dot{m}_c c_c (T_{c2} - T_{c1})$$ $$23.07 \times 10^6 = \dot{m}_c \times 4180(25 - 15)$$ $$\dot{m}_c = 551.91 \text{kg/sec}$$ $$\dot{m}_{\text{each tube}} = \rho A u_{\text{avg}} = \rho \frac{\pi}{u_{\text{avg}}} D^2 u_{\text{avg}}$$ $$= 998.8 \times \frac{\pi}{4} (0.0225)^2 \times 2.5$$ $$\dot{m}_{\text{each tube}} = 0.7942 \,\text{kg/sec}$$ No. of tube $$\times \dot{m}_{each tube} = \dot{m}_{c}$$ No. of tube = $$\frac{551.91}{0.7942}$$ = 695 Heat transfer rate (Q) = $U \times A \times LMTD$ $$23.07 \times 10^6 = 3160.17 \times A \times 29.72$$ $\Rightarrow A = 245.64 \text{ m}^2$ $A = \pi DL \times No.$ of tube $\times No.$ of pass $245.64 = \pi \times 0.0225 \times 2.5 \times 695 \times \text{No. of pass}$ No. of pass = 2 ## 09. Ans: (d) **Sol:** Effectiveness (\in) of heat exchanger will be minimum when $$C\left(\frac{C_{min}}{C_{max}}\right) = 1$$ Effectiveness of parallel flow heat $$exchanger = \frac{1 - e^{-(1+C)NTU}}{1+C}$$ When C = 1 $$\in = \frac{1 - e^{-2NTU}}{2},$$ $$\epsilon = \frac{1 - e^{-2 \times 2.5}}{2} = 0.4966 = 50\%$$ ## 10. Ans: (d) Sol: Counter flow with equal heat capacities rates: $$C = \frac{C_{min}}{C_{max}} = 1$$ (Linear temperature profile) - When C = 1, LMTD = $\theta_1 = \theta_2$ LMTD is possible to determine in counter flow heat exchanger when C = 1 - Temperature difference between hot and cold fluid is same at every section. i.e. temperature difference is invariant along the length as shown in figure. ## **Conventional Practice Solutions** 01. Sol: Given $h_i = 5 \text{ kW/m}^2 \text{K}$, $h_o = 10 \text{ kW/m}^2 \text{K}$ Over all heat transfer is given by Since $$\frac{1}{1995} = \frac{1}{U} = \frac{1}{h_i} + \frac{1}{h_o}$$ $$\frac{1}{U} = \frac{1}{5} + \frac{1}{10}$$ $$U = 3.3 \times 10^3 \text{ J/kg K}$$ Given $C_{Pc} = 4.6 \text{ kJ/kg} = 4600 \text{ J/kg K}$ $$\rho_h = 1100 \text{ kg/m}^3$$ $$\dot{m}_c = 11.8 \text{ kg/s}, \text{ velocity "V"} = 1.2 \text{ m/s}$$ Diameter of pipe, d = 0.025
m $$T_{hi} = T_{ho} = 115^{\circ}C,$$ $$T_{ci} = 65^{\circ}C,$$ $$T_{ho} = 100^{\circ} C$$ $$Q_{lost cold fluid} = \dot{m}_{c} C_{pc} \times \Delta T$$ $$= 11.8 \times 4600 \times (100 - 65)$$ $$= 1900 \text{ kW}$$ But, $$Q = UA \theta_m$$ $$1900 \times 10^{3} = 3.3 \times 10^{3} \times A \times \left(\frac{\theta_{1} - \theta_{2}}{ln\left(\frac{\theta_{1}}{\theta_{2}}\right)}\right)$$ $$1900 \times 10^{3} = 3.3 \times 10^{3} \times A \times \left(\frac{50 - 15}{ln\left(\frac{50}{15}\right)}\right)$$ $$\Rightarrow$$ A = 19.805 m² But $$\dot{m}_c = \frac{\pi}{4} d^2 \times V \times \rho \times N_p$$ Where N_p = Number of tubes required per pass. $$11.8 = \frac{\pi}{4} (0.025)^2 \times 1.2 \times 1100 \times N_p$$ $$N_p = 18.2 = 19 \text{ tubes}$$ $$A = \pi.d.L.n.p$$ $$19.805 = \pi \times 0.025 \times 3.5 \times 19 \times p$$ $$\Rightarrow$$ p = 3.91 Number of passes, (p) = 4 #### 02. Sol: Given Inlet temperature of water $$(T_i) = 10^{\circ}C = 283 \text{ K}$$ Outlet temperature of water $$(T_0) = 40^{\circ}C = 313 \text{ K}$$ Water mass rate (\dot{m}) = 0.5 kg/s Condensing side i.e. Tube outside heat transfer coefficient (h_0) = 10000 W/m²K $$(\rho) = 990 \text{ kg/m}^3,$$ Thermal conductivity (k) = $0.57 \text{ W/m}^2\text{K}$ $$(C_p) = 4180 \text{ J/kg.K}$$ Dynamic viscosity $(\mu) = 0.8 \times 10^{-3}$ Passes $Nu = 0.023 \text{ Re}^{0.8} \text{Pr}^{0.4}$ Re = $$\frac{\rho Vd}{\mu} = \frac{4\dot{m}}{\pi d\mu} = \frac{4 \times 0.5}{\pi \times 0.025 \times 0.8 \times 10^{-3}}$$ ≈ 31831 $$Pr = \frac{\mu C_p}{k} = \frac{0.8 \times 10^{-3} \times 4180}{0.57} = 5.867$$ Since $$19 \text{ Nu} = 0.023 \times (31831)^{0.8} \times (5.87)^{0.4}$$ $$Nu = 186.8$$ But, $$Nu = \frac{hd}{k}$$ (For pipe L_C = diameter of pipe) $$\therefore \frac{h_i d}{K} = 186.8$$ $$h_i = \frac{186 \times 0.57}{0.025} = 4259.04$$ Since, $$\frac{1}{UA} = \frac{1}{h_i A_i} + \frac{1}{h_o A_o} \left(\because A_0 = A_i \right)$$ $$= \left(\frac{1}{h_i} + \frac{1}{h_o} \right) \times \frac{1}{A}$$ $$= \left(\frac{1}{4259.04} + \frac{1}{10000}\right) \times \frac{1}{\pi \times 0.025 \times 10}$$ $$\Rightarrow$$ UA = 2345.9 $$NTU = \frac{UA}{C_{min}} = \frac{2345.9}{4180 \times 0.5} = 1.122$$ $$(:: C_{\min} = \dot{m}_{w} \times C_{w})$$ Effectiveness, $$\varepsilon = 1 - e^{-NTU}$$ $$= 1 - e^{-1.122} = 0.67$$ 03. **Sol:** Given: $$\dot{m}_h = 900 \text{ kg/hr}$$, $$T_{ho} = 32$$ °C, $$T_{hi} = 60^{\circ}C$$ $$T_{aa} = 27^{\circ}C$$ $$T_{ci} = 15^{\circ}C$$ $$T_{co} = 27^{\circ}\text{C},$$ $T_{ci} = 15^{\circ}\text{C}$ $C_{ph} = 0.5 \text{ kJ/kg-K},$ $C_{PC} = 1 \text{ kJ/kg-K}$ $$C_{PC} = 1 \text{ kJ/kg-K}$$ ## Energy balance: Heat lost by hot oil = heat gained by cooling fluid $$\dot{m}_{h}C_{ph}(T_{hi}-T_{h0}) = \dot{m}_{c}C_{pc}(T_{c0}-T_{ci})$$ $$900 \times 0.5(60 - 32) = \dot{m}_c \times 1(27 - 15)$$ $$\rightarrow$$ $$\dot{m}_c = 1050 \text{ kg/hr}$$ $$\dot{m}_{c}C_{pc} = 1050 \times 1 = 1050 \text{ kJ/hr}$$ $$\dot{m}_{h}C_{ph} = 900 \times 0.5 = 450 \text{ kJ/hr}$$ $$C_{min} = 450 \text{ kJ/hr} = 0.125 \text{ kJ/sec}$$ Heat capacity ratio R = $$\frac{C_{min}}{C_{max}}$$ $$R = \frac{450}{1050} = 0.4285$$ Effectiveness ($$\varepsilon$$) = $\frac{\dot{m}_h Cp_h (T_{hi} - T_{ho})}{C_{min} (T_{hi} - T_{co})}$ $$(:: C_{\min} = \dot{m}_h C_{ph})$$ $$\varepsilon = \frac{T_{hi} - T_{h0}}{T_{hi} - T_{ci}} = \frac{60 - 32}{60 - 15} = 0.622$$ But for counter flow heat exchanger $$\epsilon = \frac{1 - e^{-NTU(1-R)}}{1 - R.e^{-NTU(1-R)}}$$ $$0.622 = \frac{1 - e^{-NTU(1 - 0.4285)}}{1 - 0.4285 \cdot e^{-NTU(1 - 0.4285)}}$$ $$0.622 = \frac{1 - e^{-0.5715 \text{ NTU}}}{1 - 0.4285 e^{-0.5715 \text{ NTU}}}$$ $$\Rightarrow$$ NTU = 1.159 \approx 2 But, $$NTU = \frac{UA}{C_{min}}$$ $$\Rightarrow 2 = \frac{200 \times \pi DL}{0.125 \times 10^3} \Rightarrow L = 19.89$$ As the length of the H.E is limited to 12 m. Hence No. of tubes required is $\frac{19.89}{12} \approx 2$ 04. 1995 Since **Sol:** Given diameter of pipe = d = 0.023 m Velocity of water $$V = 2.1 \text{ m/s}$$ Inlet temperature $$(T_i) = 15$$ °C Outlet temperature $$(T_o) = 25$$ °C Mean temperature $$(T_{\rm m}) = \frac{T_{\rm i} + T_{\rm 0}}{2} = 20^{\circ}{\rm C}$$ All values takes at 20°C $$\therefore$$ At 20°C, Re = $\frac{\rho Vd}{\mu} = \frac{Vd}{v}$ $$= \frac{2.1 \times 0.023}{1.006 \times 10^{-6}}$$ $$= 48012 > 2300$$ As Re > 2300, fluid flow is turbulent For turbulent flow, $$Nu = 0.023 (Re)^{0.8} (Pr)^n$$ Where, n = 0.4 for heating n = 0.3 for cooling As in the given case water is heated up take $$n = 0.4$$ Hence $Nu = 0.023 (Re)^{0.8} (Pr)^{0.4}$ Prandtle number (Pr) = 7.02 (At 20°C from table) But, $$Nu = \frac{hd}{k}$$ $$\therefore \frac{hd}{k} = 0.023 \times (48012)^{0.8} \times (7.02)^{0.4}$$ $$\Rightarrow h_i = \frac{59.78 \times 10^{-2}}{0.023} \times 0.023 \times (48012)^{0.8} \times (7.02)^{0.4}$$ $$\Rightarrow h_i = 7247.2 \text{ W/m}^2 \text{ K}$$ Heat transfer (Q) = $hA_s\Delta T = h(\pi dl)\Delta T$ $$Q = 7247.205 \times (\pi \times 0.023) \times 10$$ $$= 5236.58 \text{ W/m}$$ $$Q/L = 5.236 \text{ kW/m}$$ **05.** **Sol:** Given: Inner diameter of the copper tube, $$(d_i)_c = 16 \text{ mm} = 0.016 \text{ m}$$ Outer diameter of copper tube, $$(d_0)_c = 19 \text{ mm} = 0.019 \text{ m}$$ Inner diameter of steel tube, $$(d_i)_s = 26 \text{ mm} = 0.026 \text{ m}$$ Outer diameter of steel tube, $$(d_0)_s = 30 \text{ mm} = 0.03 \text{ m}$$ Hot field oil inlet temperature, $(T_{h1}) = 65^{\circ}C$ Hot fluid oil out let temperature, $(T_{h2}) = 50^{\circ}C$ Cold fluid water inlet temperature, $$(T_{c1}) = 32^{\circ}C$$ Cold fluid water outlet temperature, $(T_{c2}) = ?$ Mass flow rate of oil (\dot{m}_h) = 0.4 kg/sec Mass flow rate of water $$(\dot{m}_c) = \frac{\pi}{4} (0.016)^2 \times 1.48 \times 995$$ $$= 0.296 \text{ kg/sec}$$ (:: $\dot{m} = \rho AV$) Rate of heat transfer is given by $$Q = \dot{m}_h C_{ph} (T_{h1} - T_{h2}) = \dot{m}_c C_{P} (T_{c2} - T_{c1})$$ $$Q = 0.4 \times 1.89 \times (65-50) = 11.34 \text{ kW}$$ $$Q = \dot{m}_{c} C_{p_{c}} (T_{c2} - T_{c1})$$ $$11.34 = 0.296 \times 4.187(T_{c2} - 32)$$ $$\Rightarrow$$ T_{c2} = 41°C Reynolds number for copper tube $$Re = \frac{\rho V d_i}{\mu} = \frac{\rho d_i}{\mu} \times \frac{\dot{m}}{\frac{\pi}{4} d_i^2 \times \rho}$$ Since $$Re = \frac{4\dot{m}_c}{\pi(d_i)\mu}$$ $(\because \dot{m} = \rho AV \Rightarrow V = \frac{\dot{m}}{\rho A})$ $$Re = \frac{4 \times 0.296}{\pi \times 0.016(995 \times 4.18 \times 10^{-7})}$$ $$(:: \mu = \rho v)$$ $$Re = 56826 > 2300$$ $$\therefore$$ As Re > 2300, flow is turbulent $$Pr = \frac{\mu C_p}{k} = \frac{995 \times 4.18 \times 10^{-7} \times 4.187 \times 10^3}{0.615}$$ $$Pr = 2.83$$ For turbulent flow $$Nu = 0.023(Re)^{0.8}(Pr)^{0.3}$$ $$Nu = 0.023(56826)^{0.8}(2.83)^{0.3} = 199.94$$ But, Nu = $$\frac{h_i(d_i)_c}{k}$$ = 199.94 $$\Rightarrow h_i = \frac{199.94 \times 0.615}{0.016} = 7685.22 \text{ W/m}^2 \text{K}$$ As the oil flows in annulus, hydraulic diameter has to be consider to find Re for annulus flow $$\begin{aligned} \text{Hydraulic diameter } (d_h \) &= (d_i)_s - (d_0)_c \\ &= 0.026 - 0.019 \\ &= 0.007 \ m \end{aligned}$$ $$Re = \frac{\rho U_{m} D_{m}}{\mu} = \frac{4\dot{m}}{\pi d_{h} \mu}$$ $$= \frac{4 \times 0.4}{\pi (0.007) \times (850 \times 7.44 \times 10^{-6})}$$ $$= 11504.83$$ As Re > 2300, flow is turbulent in annulus $$\therefore$$ Nu = 0.023(Re)^{0.8}(Pr)^{0.4} $$Pr = \frac{\mu C_p}{k} = \frac{850 \times 7.44 \times 10^{-6} \times 1890}{0.138} = 86.61$$ $$Nu = 0.023(Re)^{0.8}(Pr)^{0.3}$$ $$Nu = \frac{h_0 D_h}{K} = 0.023(11504.83)^{0.8} \times (86.61)^{0.3}$$ $$= 155.48$$ $$h_0 = \frac{155.48 \times 0.138}{0.007} = 3065.37 \text{ W/m}^2 \text{K}$$ Over all heat transfer coefficient is given by $$\frac{1}{U_{i}} = \frac{1}{h_{i}} + \frac{1}{h_{o}} \times \frac{(r_{i})}{(r_{o})} + R_{fi} + R_{fo} \times \frac{(r_{i})}{(r_{o})}$$ $$= \frac{1}{7685.22} + \frac{1}{3065.37} \left(\frac{0.008}{0.0095} \right) + 0.0005 + 0.0008 \left(\frac{0.008}{0.0095} \right)$$ $$U_i = 633.5 \ W/m^2 K$$ LMTD $$(\theta)_{\text{m}} = \frac{\theta_1 - \theta_2}{ln\left(\frac{\theta_1}{\theta_2}\right)} = \frac{24 - 18}{ln\frac{24}{18}} = 20.86^{\circ}\text{C}$$ Heat transfer, $$Q = U_i A_i \theta_m$$ $11.34 \times 10^3 = 633.5 (\pi \times d_i \times L) \times 20.86$ $11340 = 633.5 \times \pi \times 0.016 \times L \times 20.86$ $\Rightarrow L = 17.07 \text{ m}$ **06.** **Sol:** Tube inner diameter, $D_i = 2.118$ cm Tube outer diameter, $D_0 = 0.0254$ cm No. of fins (n) = 20 Height of fins (h) = 2.5 cm = 0.025 m Thickness of fin (t) = 0.16 cm = 0.0016 m Heat transfer coefficient inside $$(h_i) = 113 \text{ W/m}^2 \text{°C}$$ Heat transfer coefficient outside $$(h_0) = 255 \text{ W/m}^2 \text{°C}$$ Total surface area which is exposed to heat transfer $$A_0 = (\pi D0 \times L) + 2(h \times L) \times n$$ Where, L = length of Heat Exchanger (m) $$n = No.$$ of fins $$A_0 = [\pi(0.0254) + 2(0.025)] \times L$$ $$= 1.0797L \approx 1.08 \text{ L m}^2$$ Overall heat transfer coefficient with fins is given by $$U_{0} = \frac{1}{\frac{A_{0}}{A_{i}} \times \left(\frac{1}{h_{i}}\right) + \frac{A_{0}}{2\pi kL} \cdot \ln \frac{r_{0}}{r_{i}} + \frac{1}{h_{0}}}$$ $$= \frac{1}{\left(\frac{1.08L}{\pi D_{i}L} \times \frac{1}{1130}\right) + \left(\frac{1.08L}{2\pi (45)L} \times \ln \left(\frac{0.0254}{0.02118}\right) + \frac{1}{255}\right)}$$ $$= \frac{1}{0.01436 + 6.94 \times 10^{-4} + 3.9215 \times 10^{-3}}$$ $$U_{0} = 52.699 \text{ W/m}^{2} \text{ C}$$ $$(\because \text{ where } \pi D_{i}L = \pi (0.02118L)$$ Overall heat transfer coefficient without fins. $$U_{0} = \frac{1}{\frac{1}{h_{0}} + \frac{\pi D_{0}L}{2\pi kL} \cdot \ln \frac{r_{0}}{r_{i}} + \frac{r_{0}}{h_{i}r_{i}}}$$ $$= \frac{1}{\frac{1}{255} + \frac{\pi (0.0254)L}{2\pi (45)L} \ln \left(\frac{0.0254}{0.02118}\right) + \left(\frac{0.0254}{1130 \times 0.02118}\right)}$$ $$U_{0} = 198.706 \text{ W/m}^{2} \text{ C}$$ # Chapter - 7 **Boiling and Condensation** 01. Ans: (a) Temperature in nucleate boiling region is less than that of film
boiling region as shown in figure. 02. Ans: (d) **Sol:** If a surface pock-marked with a number of cavities, the surface area would increase. And as a result nucleate boiling, conduction and convection will increase. 03. Ans: (d) Sol: The convective coefficients for boiling and condensation usually lie in the range of $2500 - 10,000 \text{ W/m}^2\text{K}$. 04. Ans: (c) Sol: Dropwise condensation usually occurs on oily surface. The heat transfer coefficient for the dropwise condensation is more as compared to filmwise condensation. Ans: (a) **Sol:** When saturated steam is condensed over the flat plate, the temp of steam remains constant hence the heat transfer coefficient along the length does not vary. Therefore local and average heat transfer coefficients are equal. Correct answer is option (a). Ans: (c) **06.** Sol: Condensation heat transfer coefficient for vertical surface is given by $$h_{v} = 0.943 \left[\frac{k^{3} \rho^{2} g h_{fg}}{\mu \ell (t_{sat} - t_{s})} \right]^{\frac{1}{4}}$$ $$\begin{aligned} h_v &\propto (k^3)^{1/4} \\ h_v &\propto k^{3/4} \end{aligned}$$ $$h_v \propto k^{3/4}$$ 07. Ans: (c) Sol: Milk spills over when it is boiled in an open vessel. The boiling of milk at this instant considered as film boiling. **08.** Ans: (d) From above figure, with increase in temperature, the heat flux first increases upto critical point and then decreases and again it increases. 09. Ans: (c) **Sol:** The excess temperature range between 50°C and 200°C indicates partial film boiling. **10.** Ans: (d) **Sol:** The heat flux in nucleate boiling (Rohsenow Correlation) $$\boldsymbol{q}_{s} = \boldsymbol{\mu}_{\ell}\boldsymbol{h}_{fg} \left(\frac{\boldsymbol{g}\!\left(\boldsymbol{\rho}_{\ell} - \boldsymbol{\rho}_{v}\right)}{\boldsymbol{\sigma}}\right)^{\!\frac{1}{2}} \!\!\left(\frac{\boldsymbol{c}_{p,\ell} \times \! \Delta \boldsymbol{T}_{ex}}{\boldsymbol{C}_{s,f} \times \boldsymbol{h}_{fg} \times \! \boldsymbol{Pr}_{\ell}^{n}}\right)^{\!3}$$ $$q_s \propto h_{fg} \times \left(\frac{1}{h_{fg}}\right)^3$$ $$q_s \propto \left(\frac{1}{h_{fg}}\right)^2$$ Correct answer is option (d). Ans: (d) 11. Sol: Heat flux in nucleate pool boiling depends on following parameters: - Properties of liquid (Ex: h_{fg}, Pr, etc) - material - surface condition, etc 12. Ans: (a) Sol: Boiling: It occurs when a heated surface is exposed to a liquid and maintained at a temperature higher than the saturation temperature of the liquid. 13. Ans: (b) **Sol:** $$q_{max} = 0.149 h_{fg} \times \rho_v \left(\frac{\sigma g(\rho_\ell - \rho_v)}{\rho_v^2} \right)^{\frac{1}{4}}$$ Critical (burnout) heat flux depends on - Heat of evaporation (h_{fg}) - Density of vapour (ρ_v) - Density of liquid (ρ_l) - Surface tension at the vapour-liquid Interface (σ) - 14. Ans: (a) **Sol:** Refer to Solution of Q.No. 01 - 15. Ans: (d) - Ans: (b) 16. Sol: Film boiling gets promoted on a smooth surface. ## **Conventional Practice Solutions** 01. Sol: Nusselt's analysis of film condensation makes the following assumptions. - 1. The film of the liquid formed flows under the action of gravity. - 2. The condensate flow is laminar and the fluid properties are constant - 3. The liquid film is in good thermal contact with the cooling surface and, therefore, temperature at the inside of the film is taken equal to the surface temperature t_s. Further, the temperature at the liquid vapour interface is equal to the saturation temperature t_{sat} at the prevailing pressure. - 4. Viscous shear and gravitational forces are assumed to act on the fluid; thus normal viscous force and inertia forces are neglected. - 5. The shear stress at the liquid vapor interface is negligible. This means there is no velocity gradient at the liquid-vapour interface [i.e., $\left(\frac{\partial \mathbf{u}}{\partial \mathbf{y}}\right)_{\mathbf{y}=\delta} = 0$]. - 6. The heat transfer across the condensate layer is by pure conduction & temperature distribution is linear. - 7. The condensing vapour is entirely clean and free from gases, air and noncondensing impurities. - 8. Radiation between vapour and liquid film; horizontal component of velocity at any point in the liquid film; and curvature of the film are considered negligibly small. #### Film heat transfer coefficient: The heat flow from the vapour to the surface by conduction through the liquid film is given $$dQ = \frac{k(b.dx)}{\delta}(t_{sat} - t_s) \dots (1)$$ The heat flow can also be expressed as $$dQ = h_x(b.dx)(t_{sat} - t_s)$$(2) Where, h_x = the local heat transfer coefficient. From (1) and (2), we get $$\frac{k(b.dx)}{\delta}(t_{sat} - t_{s}) = h_{x}(b.dx)(t_{sat} - t_{s})$$ $$h_x = \frac{k}{\delta}$$(3) Equation (3) depicts that at a definite point on the heat transfer surface, the film coefficient (h_x) is directly proportional to thermal conductivity (k) and inversely proportional to thickness of film (δ) at that point. Substituting the value of δ from equation $$\delta = \left[\frac{4k\mu(t_{sat} - t_s)x}{\rho_{\ell}(\rho_{\ell} - \rho_{v})gh_{fg}} \right]^{\frac{1}{4}}, \text{ we get}$$ $$h_{x} = \left[\frac{\rho_{\ell}(\rho_{\ell} - \rho_{v})k^{3}gh_{fg}}{4\mu x(t_{sat} - t_{s})} \right]^{\frac{1}{4}}$$ Local heat transfer coefficient at the lower end of the plate, i.e., x = L $$h_L = \left\lceil \frac{k^3 \rho^2 g h_{fg}}{4 \mu L \left(t_{sat} - t_s\right)} \right\rceil^{\frac{1}{4}}$$ Evidently the rate of condensation heat transfer is higher at the upper end of the plate than that at the lower end. The average value of heat transfer can be obtained by integrating the local value of coefficient equation as follows: $$\begin{split} \overline{h} &= \frac{1}{L} \int_{0}^{L} h_{x} dx \\ &= \frac{1}{L} \int_{0}^{L} \left[\frac{\rho_{\ell} (\rho_{\ell} - \rho_{v}) k^{3} g h_{fg}}{4 \mu x (t_{sat} - t_{s})} \right]^{\frac{1}{4}} dx \\ &= \frac{1}{L} \left[\frac{\rho_{\ell} (\rho_{\ell} - \rho_{v}) k^{3} g h_{fg}}{4 \mu (t_{sat} - t_{s})} \right]^{\frac{1}{4}} \int_{0}^{L} x^{-\frac{1}{4}} dx \\ &= \frac{1}{L} \left[\frac{\rho_{\ell} (\rho_{\ell} - \rho_{v}) k^{3} g h_{fg}}{4 \mu (t_{sat} - t_{s})} \right]^{\frac{1}{4}} \left[\frac{x^{\left(-\frac{1}{4} + 1\right)}}{\frac{-1}{4} + 1} \right]_{0}^{L} \\ &\overline{h} &= \frac{4}{3} \left[\frac{\rho_{\ell} (\rho_{\ell} - \rho_{v}) k^{3} g h_{fg}}{4 \mu L (t_{sol} - t_{s})} \right]^{\frac{1}{4}} \dots (4) \end{split}$$ $$\overline{h} = \left(\frac{4}{3}h_L\right) = \left(\frac{4}{3} \times \frac{k}{\delta_L}\right)$$ Where, h_L= local heat transfer coefficient at the lower edge of the plate. This shows that the average heat transfer coefficient is $\frac{4}{3}$ times the local heat transfer coefficient at the trailing edge of plate. Equation (4) is usually written in the form $$\overline{h} = 0.943 \left(\frac{\rho_1 (\rho_1 - \rho_v) k^3 g h_{fg}}{\mu L(t_{sat} - t_s)} \right)^{\frac{1}{4}}$$ The Nusselt solution derived above is an approximate one because experimental results have shown that it yields results which are approximately 20 percent lower than the measured values. Mc Adams proposed to use a value of 1.13 in place of coefficient 0.943. Hence $$\overline{h} = 1.13 \left(\frac{\rho_1 (\rho_1 - \rho_v) k^3 g h_{fg}}{\mu L(t_{sat} - t_s)} \right)^{\frac{1}{4}}$$ Where. ρ_l = Density of liquid film ρ_{ν} = Density of vapour h_{fg} = latent heat of condensation k = thermal conductivity of liquid film μ = absolute viscosity of liquid film t_s = surface temperature t_{sat} = saturation temperature of vapour at prevailing pressure